Recovery, bioaccumulation, and inactivation of human waterborne pathogens by the Chesapeake Bay nonnative oyster, Crassostrea ariakensis.
نویسندگان
چکیده
The introduction of nonnative oysters (i.e., Crassostrea ariakensis) into the Chesapeake Bay has been proposed as necessary for the restoration of the oyster industry; however, nothing is known about the public health risks related to contamination of these oysters with human pathogens. Commercial market-size C. ariakensis triploids were maintained in large marine tanks with water of low (8-ppt), medium (12-ppt), and high (20-ppt) salinities spiked with 1.0 x 10(5) transmissive stages of the following human pathogens: Cryptosporidium parvum oocysts, Giardia lamblia cysts, and microsporidian spores (i.e., Encephalitozoon intestinalis, Encephalitozoon hellem, and Enterocytozoon bieneusi). Viable oocysts and spores were still detected in oysters on day 33 post-water inoculation (pwi), and cysts were detected on day 14 pwi. The recovery, bioaccumulation, depuration, and inactivation rates of human waterborne pathogens by C. ariakensis triploids were driven by salinity and were optimal in medium- and high-salinity water. The concentration of human pathogens from ambient water by C. ariakensis and the retention of these pathogens without (or with minimal) inactivation and a very low depuration rate provide evidence that these oysters may present a public health threat upon entering the human food chain, if harvested from polluted water. This conclusion is reinforced by the concentration of waterborne pathogens used in the present study, which was representative of levels of infectious agents in surface waters, including the Chesapeake Bay. Aquacultures of nonnative oysters in the Chesapeake Bay will provide excellent ecological services in regard to efficient cleaning of human-infectious agents from the estuarine waters.
منابع مشابه
Bioaccumulation, retention, and depuration of enteric viruses by Crassostrea virginica and Crassostrea ariakensis oysters.
Crassostrea ariakensis oysters are under review for introduction into the Chesapeake Bay. However, the human health implications of the introduction have not been fully addressed. This study evaluated rates of bioaccumulation, retention, and depuration of viruses by Crassostrea virginica and C. ariakensis when the two oyster species were maintained in separate tanks containing synthetic seawate...
متن کاملShell hardness and compressive strength of the Eastern oyster, Crassostrea virginica, and the Asian oyster, Crassostrea ariakensis.
The valves of oysters act as a physical barrier between tissues and the external environment, thereby protecting the oyster from environmental stress and predation. To better understand differences in shell properties and predation susceptibilities of two physiologically and morphologically similar oysters, Crassostrea virginica and Crassostrea ariakensis, we quantified and compared two mechani...
متن کاملOyster-Sea Nettle Interdependence and Altered Control Within the Chesapeake Bay Ecosystem
Research on the effects of declining abundances of the Eastern oyster (Crassostrea virginica) in Chesapeake Bay and other estuaries has primarily focused on the role of oysters in filtration and nutrient dynamics, and as habitat for fish or fish prey. Oysters also play a key role in providing substrate for the overwintering polyp stage of the scyphomedusa sea nettle, Chrysaora quinquecirrha, wh...
متن کاملDevelopment and validation of a predictive model for the growth of Vibrio vulnificus in postharvest shellstock oysters.
Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oys...
متن کاملLimits to top-down control of phytoplankton by oysters in Chesapeake Bay
Restoration of the oyster Crassostrea virginica population in Chesapeake Bay is often advocated as an easy solution for controlling phytoplankton blooms. Even at their pre-colonial densities, oysters are unlikely to have controlled blooms, despite the fact that sediment cores suggest that pre-colonial spring blooms were smaller than at present. Lack of access to all bay water and low springtime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2006