Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program.

نویسندگان

  • Xiaochun Long
  • Sarah L Cowan
  • Joseph M Miano
چکیده

OBJECTIVE Several studies have shown through chemical inhibitors that p38 mitogen-activated protein kinase (MAPK) promotes vascular smooth muscle cell (VSMC) differentiation. Here, we evaluate the effects of knocking down a dominant p38MAPK isoform on VSMC differentiation. METHODS AND RESULTS Knockdown of p38MAPKα (MAPK14) in human coronary artery SMCs unexpectedly increases VSMC differentiation genes, such as miR145, ACTA2, CNN1, LMOD1, and TAGLN, with little change in the expression of serum response factor (SRF) and 2 SRF cofactors, myocardin (MYOCD) and myocardin-related transcription factor A (MKL1). A variety of chemical and biological inhibitors demonstrate a critical role for a RhoA-MKL1-SRF-dependent pathway in mediating these effects. MAPK14 knockdown promotes MKL1 nuclear localization and VSMC marker expression, an effect partially reversed with Y27632; in contrast, MAP2K6 (MKK6) blocks MKL1 nuclear import and VSMC marker expression. Immunostaining and Western blotting of injured mouse carotid arteries reveal elevated MAPK14 (both total and phosphorylated) and reduced VSMC marker expression. CONCLUSIONS Reduced MAPK14 expression evokes unanticipated increases in VSMC contractile genes, suggesting an unrecognized negative regulatory role for MAPK14 signaling in VSMC differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate.

OBJECTIVE Vascular smooth muscle cells (VSMCs) modulate their phenotype between synthetic and contractile states in response to environmental changes; this modulation plays a crucial role in the pathogenesis of restenosis and atherosclerosis. Here, we identified fibroblast growth factor 12 (FGF12) as a novel key regulator of the VSMC phenotype switch. APPROACH AND RESULTS Using murine models ...

متن کامل

microRNA let‐7g suppresses PDGF‐induced conversion of vascular smooth muscle cell into the synthetic phenotype

Platelet-derived growth factor (PDGF) can promote vascular smooth muscle cells (VSMCs) to switch from the quiescent contractile phenotype to synthetic phenotype, which contributes to atherosclerosis. We aimed to investigate the role of microRNA let-7g in phenotypic switching. Bioinformatics prediction was used to find let-7g target genes in the PDGF/mitogen-activated protein kinase kinase kinas...

متن کامل

Inhibition of vascular smooth muscle cell proliferation and neointimal formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor.

BACKGROUND Mitogen-activated protein kinases (MAPKs) are rapidly induced after arterial injury in different animal models. However, their precise role in vascular smooth muscle cell (VSMC) proliferation and neointimal formation in vivo remains to be determined. METHODS AND RESULTS We investigated the properties of a novel, selective inhibitor of the upstream kinase, MAPK/extracellular signal-...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

N-terminal proteolysis of the endothelin B receptor abolishes its ability to induce EGF receptor transactivation and contractile protein expression in vascular smooth muscle cells.

OBJECTIVE The extracellular N terminus of the endothelin B (ETB) receptor is cleaved by a metalloprotease in an agonist-dependent manner, but the physiological role of this N-terminal proteolysis is not known. In this study, we aimed to determine the functional role of the ETB receptor and of its N-terminal cleavage in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS VSMCs expressing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2013