An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems
نویسنده
چکیده
In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start points for an efficient interior-point algorithm, while the approximation computed consists of a finite set of discrete points. Complexity results for the method proposed are derived. It turns out that the number of operations per point decreases when the number of points generated for the approximation increases.
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA New Adaptive Algorithm for Convex Quadratic Multicriteria Optimization
We present a new adaptive algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Numerical results show that this technique is faster than a standard method used for this problem.
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملComputational Experience with a Primal-dual Interior Point Method for Smooth Convex Placement Problems
We present a primal-dual interior point method (IPM) for solving smooth convex optimization problems which arise during the placement of integrated circuits. The interior point method represents a substantial enhancement in flexibility verses other methods while having similar computational requirements. We illustrate that iterative solvers are efficient for calculation of search directions dur...
متن کاملInterior-point methods for magnitude filter design
ABSTRACT We describe efficient interior-point methods for the design of filters with constraints on the magnitude spectrum, for example, piecewise-constant upper and lower bounds, and arbitrary phase. Several researchers have observed that problems of this type can be solved via convex optimization and spectral factorization. The associated optimization problems are usually solved via linear pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2006