Entropy Rates of the Multidimensional Moran Processes and Generalizations
نویسنده
چکیده
The interrelationships of the fundamental biological processes natural selection, mutation, and stochastic drift are quantified by the entropy rate of Moran processes with mutation, measuring the long-run variation of a Markov process. The entropy rate is shown to behave intuitively with respect to evolutionary parameters such as monotonicity with respect to mutation probability (for the neutral landscape), relative fitness, and strength of selection. Strict upper bounds, depending only on the number of replicating types, for the entropy rate are given and the neutral fitness landscape attains the maximum in the large population limit. Various additional limits are computed including small mutation, weak and strong selection, and large population holding the other parameters constant, revealing the individual contributions and dependences of each evolutionary parameter on the long-run outcomes of the processes.
منابع مشابه
The Inherent Randomness of Evolving Populations
The entropy rates of the Wright-Fisher process, the Moran process, and generalizations are computed and used to compare these processes and their dependence on standard evolutionary parameters. Entropy rates are measures of the variation dependent on both short-run and long-run behavior, and allow the relationships between mutation, selection, and population size to be examined. Bounds for the ...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملStationary Stability for Evolutionary Dynamics in Finite Populations
We demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability th...
متن کاملComparison of entropy generation minimization principle and entransy theory in optimal design of thermal systems
In this study, the relationship among the concepts of entropy generation rate, entransy theory, and generalized thermal resistance to the optimal design of thermal systems is discussed. The equations of entropy and entransy rates are compared and their implications for optimization of conductive heat transfer are analyzed. The theoretical analyses show that based on entropy generation minimizat...
متن کاملADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes
In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1401.2713 شماره
صفحات -
تاریخ انتشار 2014