Amphiphilic Degradable Polymer/Hydroxyapatite Compositesas Smart Bone Tissue Engineering Scaffolds: A Dissertation
نویسندگان
چکیده
Over 600,000 bone-grafting operations are performed each year in the United States. The majority of the bone used for these surgeries comes from autografts that are limited in quantity or allografts with high failure rates. Current synthetic bone grafting materials have poor mechanical properties, handling characteristics, and bioactivity. The goal of this dissertation was to develop a clinically translatable bone tissue engineering scaffold with improved handling characteristics, bioactivity, and smart delivery modalities. We hypothesized that this could be achieved through the rational selection of Food and Drug Administration (FDA) approved materials that blend favorably with hydroxyapatite (HA), the principle mineral component in bone. This dissertation describes the development of smart bone tissue engineering scaffolds composed of the biodegradable amphiphilic polymer poly(D,L-lactic acid-co-ethylene glycol-coD,L-lactic acid) (PELA) and HA. Electrospun nanofibrous HA-PELA scaffolds exhibited improved handling characteristics and bioactivity over conventional HApoly(D,L-lactic acid) composites. Electrospun HA-PELA was hydrophilic, elastic, stiffened upon hydration, and supported the attachment and osteogenic differentiation of rat bone marrow stromal cells (MSCs). These in vitro properties translated into robust bone formation in vivo using a critical-size femoral defect model in rats. Spiral-wrapped HA-PELA scaffolds, loaded with MSCs or a lowdose of recombinant human bone morphogenetic protein-2, templated bone formation along the defect. As an alternate approach, PELA and HA-PELA were
منابع مشابه
EVALUATION OF ANTIBACTERIAL PROPERTIES OF POLYLACTIC ACID-POLYCAPROLACTONE-CONTAINING HYDROXYAPATITE AND ZINC OXIDE NANOPARTICLES IN HARD TISSUE ABSORBABLE SCAFFOLDS
Today, many people need to use bone grafts and implants because of damage to bone tissue. Due to the stimulation of the immune system after implantation, infection at the operation site is very common, which causes swelling and pain in the operation area. The use of zinc oxide nanoparticles reduces infection at the operation site and reduces the patient's need for antibiotics. In the present st...
متن کاملGrowth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.
Strategies to engineer bone have focused on the use of natural or synthetic degradable materials as scaffolds for cell transplantation or as substrates to guide bone regeneration. The basic requirements of the scaffold material are biocompatibility, degradability, mechanical integrity, and osteoconductivity. A major design problem is satisfying each of these requirements with a single scaffold ...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کامل