Community Extraction in Multilayer Networks with Heterogeneous Community Structure
نویسندگان
چکیده
Multilayer networks are a useful way to capture and model multiple, binary relationships among a fixed group of objects. While community detection has proven to be a useful exploratory technique for the analysis of single-layer networks, the development of community detection methods for multilayer networks is still in its infancy. We propose and investigate a procedure, called Multilayer Extraction, that identifies densely connected vertex-layer sets in multilayer networks. Multilayer Extraction makes use of a significance based score that quantifies the connectivity of an observed vertex-layer set by comparison with a multilayer fixed degree random graph model. Unlike existing detection methods, Multilayer Extraction handles networks with heterogeneous layers where community structure may be different from layer to layer. The procedure is able to capture overlapping communities, and it identifies background vertex-layer pairs that do not belong to any community. We establish large-graph consistency of the vertex-layer set optimizer of our proposed multilayer score under the multilayer stochastic block model. We investigate the performance of Multilayer Extraction empirically on three applications, as well as a test bed of simulations. Our theoretical and numerical evaluations suggest that Multilayer Extraction is an effective exploratory tool for analyzing complex multilayer networks. Publicly available R software for Multilayer Extraction is available at https://github.com/jdwilson4/MultilayerExtraction.
منابع مشابه
Community Detection Using Multilayer Edge Mixture Model
A wide range of complex systems can be modeled as networks with corresponding constraints on the edges and nodes, which have been extensively studied in recent years. Nowadays, with the progress of information technology, systems that contain the information collected from multiple perspectives have been generated. The conventional models designed for single perspective networks fail to depict ...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملInformation transfer in community structured multiplex networks
The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer...
متن کاملResolution Limits for Detecting Community Changes in Multilayer Networks
Multilayer networks capture pairwise relationships between the components of complex systems across multiple modes or scales of interactions. An important meso-scale feature of these networks is measured though their community structure, which defines groups of strongly connected nodes that exist within and across network layers. Because interlayer edges can describe relationships between diffe...
متن کاملتشخیص اجتماعات ترکیبی در شبکههای اجتماعی
One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 18 شماره
صفحات -
تاریخ انتشار 2017