Control of Lower-Limb Overturning Circulation in the Southern Ocean by Diapycnal Mixing and Mesoscale Eddy Transfer
نویسندگان
چکیده
A simple model is developed of the lower limb of the meridional overturning circulation in the Southern Ocean based on residual-mean theory. It is hypothesized that the strength of the lower-limb overturning ( ) is strongly controlled by the magnitude of abyssal diapycnal mixing ( ) and that of mesoscale eddy transfer (K ). In particular, it is argued that K. The scaling and associated theory find support in a suite of sensitivity experiments with an idealized ocean general circulation model. This study shows that intense diapycnal mixing is required to close the buoyancy budget of the lower-limb overturning circulation, in contrast to the upper limb, where air–sea buoyancy fluxes can provide the required diabatic forcing.
منابع مشابه
Control of lower limb circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer
We develop a simple model of the lower limb of the meridional overturning circulation in the Southern Ocean based on residual mean theory. We hypothesize that the strength of the lower limb (Ψ) is strongly controlled by the magnitude of abyssal diapycnal mixing (κ), and that of mesoscale eddy transfer (K). In particular, we argue that Ψ ∝ √ κK. The scaling and associated theory find support in ...
متن کاملOn Challenges in Predicting Bottom Water Transport in the Southern Ocean
Changes in the Southern Ocean lower-limb overturning circulation are analyzed using a set of climate models. In agreement with some recently developed theoretical models, it is found that the overturning can be strongly affected by winds. In particular, the simulated strengthening of large-scale southward transport in the abyss is explicitly driven by zonal wind stress. However, there is a cons...
متن کاملThe Zonal Dimension of the Indian Ocean Meridional Overturning Circulation
The three-dimensional structure of the meridional overturning circulation (MOC) in the deep Indian Ocean is investigated with an eddy-permitting ocean model. The amplitude of the modeled deep Indian Ocean MOC is 5.6 Sv (1 Sv 10 m s ), a broadly realistic but somewhat weak overturning. Although the model parameterization of diapycnal mixing is inaccurate, the model’s short spinup allows the effe...
متن کاملEarly Online Release
Changes in the Southern Ocean lower-limb overturning circulation are analyzed using a set of climate models. In agreement with some recently developed theoretical models, it is found that the overturning can be strongly affected by winds. In particular, the simulated strengthening of large-scale southward transport in the abyss is explicitly driven by zonal wind stress. However, there is a cons...
متن کاملThe Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) Project
The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry...
متن کامل