Product Algebras for Galerkin Discretisations of Boundary Integral Operators and Their Applications∗
نویسندگان
چکیده
Operator products occur naturally in a range of regularized boundary integral equation formulations. However, while a Galerkin discretisation only depends on the domain space and the test (or dual) space of the operator, products require a notion of the range. In the boundary element software package Bempp we have implemented a complete operator algebra that depends on knowledge of the domain, range and test space. The aim was to develop a way of working with Galerkin operators in boundary element software that is as close to working with the strong form on paper as possible while hiding the complexities of Galerkin discretisations. In this paper, we demonstrate the implementation of this operator algebra and show, using various Laplace and Helmholtz example problems, how it significantly simplifies the definition and solution of a wide range of typical boundary integral equation problems.
منابع مشابه
BEM with linear complexity for the classical boundary integral operators
Alternative representations of boundary integral operators corresponding to elliptic boundary value problems are developed as a starting point for numerical approximations as, e.g., Galerkin boundary elements including numerical quadrature and panel-clustering. These representations have the advantage that the integrands of the integral operators have a reduced singular behaviour allowing one t...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملA priori error analysis of the BEM with graded meshes for the electric field integral equation on polyhedral surfaces
The Galerkin boundary element discretisations of the electric eld integral equation (EFIE) on Lipschitz polyhedral surfaces su er slow convergence rates when the underlying surface meshes are quasi-uniform and shape-regular. This is due to singular behaviour of the solution to this problem in neighbourhoods of vertices and edges of the surface. Aiming to improve convergence rates of the Galerki...
متن کاملChallenges and Applications of Boundary Element Domain Decomposition Methods
Boundary integral equation methods are well suited to represent the Dirichlet to Neumann maps which are required in the formulation of domain decomposition methods. Based on the symmetric representation of the local Steklov– Poincaré operators by a symmetric Galerkin boundary element method, we describe a stabilized variational formulation for the local Dirichlet to Neumann map. By a strong cou...
متن کاملA Nyström method for weakly singular integral operators on surfaces
We describe a modified Nyström method for the discretization of the weakly singular boundary integral operators which arise from the formulation of linear elliptic boundary value problems as integral equations. Standard Nyström and collocation schemes proceed by representing functions via their values at a collection of quadrature nodes. Our method uses appropriately scaled function values in l...
متن کامل