Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition.

نویسندگان

  • Andreas Fischer
  • Christian Steidl
  • Toni U Wagner
  • Esra Lang
  • Peter M Jakob
  • Peter Friedl
  • Klaus-Peter Knobeloch
  • Manfred Gessler
چکیده

Congenital heart defects affect almost 1% of human newborns. Recently, mutations in Notch ligands and receptors have been found to cause a variety of heart defects in rodents and humans. However, the molecular effects downstream of Notch are still poorly understood. Here we report that combined inactivation of Hey1 and HeyL, two primary target genes of Notch, causes severe heart malformations, including membranous ventricular septal defects and dysplastic atrioventricular and pulmonary valves. These defects lead to congestive cardiac failure with high lethality. We found both genes to be coexpressed with Notch1, Notch2 and the Notch ligand Jagged1 in the endocardium of the atrioventricular canal, representing the primary source of mesenchymal cells forming membraneous septum and valves. Atrioventricular explants from Hey1/HeyL deficient mice exhibited impaired epithelial to mesenchymal transition. Although epithelial to mesenchymal transition was initiated regularly, full transformation into mesenchymal cells failed. This was accompanied by reduced levels of matrix metalloproteinase-2 expression and reduced cell density in endocardial cushions in vivo. We further show that loss of Hey2 leads to very similar deficiencies, whereas a Notch1 null mutation completely abolishes epithelial to mesenchymal transition. Thus, the Hey gene family shows overlap in controlling Notch induced endocardial epithelial to mesenchymal transition, a process critical for valve and septum formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation.

Cardiac valve formation is crucial for embryonic and adult heart function. Valve malformations constitute the most common congenital cardiac defect, but little is known about the molecular mechanisms regulating valve formation and homeostasis. Here, we show that endocardial Notch1 and myocardial Bmp2 signal integration establish a valve-forming field between 2 chamber developmental domains. Pat...

متن کامل

Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis.

Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, ...

متن کامل

Loss of connexin45 causes a cushion defect in early cardiogenesis.

At around embryonic day 9, the primitive heart of a mouse embryo undergoes spectacular alterations within 24 hours. We created mice harboring an nls-lacZ gene in place of connexin45, which encodes the only known gap junction protein in the primitive heart before embryonic day 9, using the Cre-loxP system. Connexin45-deficient mice died of heart failure at around embryonic day 10. They initiated...

متن کامل

Essentiality of Regulator of G Protein Signaling 6 and Oxidized Ca2+/Calmodulin‐Dependent Protein Kinase II in Notch Signaling and Cardiovascular Development

BACKGROUND Congenital heart defects are the most common birth defects worldwide. Although defective Notch signaling is the major cause of mouse embryonic death from cardiovascular defects, how Notch signaling is regulated during embryonic vasculogenesis and heart development is poorly understood. METHODS AND RESULTS Regulator of G protein signaling 6 (RGS6)-/-/Ca2+/calmodulin-dependent protei...

متن کامل

Epithelial to mesenchymal transition concept in Cancer: Review article

Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2007