A Wavelet-Optimized, Very High Order Adaptive Grid and Order Numerical Method

نویسنده

  • Leland Jameson
چکیده

Differencing operators of arbitrarily high order can be constructed by interpolating a polynomial through a set of data followed by differentiation of this polynomial and finally evaluation of the polynomial at the point where a derivative approximation is desired. Furthermore, the interpolating polynomial can be constructed from algebraic, trigonometric, or, perhaps exponential polynomials. This paper begins with a comparison of such differencing operator construction. Next, the issue of proper grids for high order polynomials is addressed. Finally, an adaptive numerical method is introduced which adapts the numerical grid and the order of the differencing operator depending on the data. The numerical grid adaptation is performed on a Chebyshev grid. That is, at each level of refinement the grid is a Chebyshev grid and this grid is refined locally based on wavelet analysis. 1This research was supported in part by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Wavelet Collocation Method for Simulation of Time Dependent Maxwell’s Equations

This paper investigates an adaptive wavelet collocation time domain method for the numerical solution of Maxwell’s equations. In this method a computational grid is dynamically adapted at each time step by using the wavelet decomposition of the field at that time instant. In the regions where the fields are highly localized, the method assigns more grid points; and in the regions where the fiel...

متن کامل

شبیه‌سازی عددی جریان تقارن‌محوری مافوق‌صوت لزج بر روی دماغه سرپخ با استفاده از روش اختلاف محدود مرتبه چهارم قطری شده

Abstract: In this paper, by using diagonal fourth order central difference method and TLNS equations, the numerical solution of the steady viscous supersonic axisymmetric flow is implemented over blunt cone with shock-fitting method. Because of using high order terms of Taylor series in discretization of derivation, this method has high accuracy and low numerical error (dispersion error) with r...

متن کامل

Wavelet Analysis and Ocean Modeling: A Dynamically Adaptive Numerical Method ‘‘WOFD-AHO’’

Wavelet analysis provides information on the energy present at various scales and locations throughout a computational domain. This information is precisely the information that is needed to define the appropriate gridpoint densities and the appropriate numerical order to resolve the physics at hand in the computationally most efficient manner. Here a two-dimensional version of the numerical me...

متن کامل

Adopting the Multiresolution Wavelet Analysis in Radial Basis Functions to Solve the Perona-Malik Equation

Wavelets and radial basis functions (RBF) have ubiquitously proved very successful to solve different forms of partial differential equations (PDE) using shifted basis functions, and as with the other meshless methods, they have been extensively used in scattered data interpolation. The current paper proposes a framework that successfully reconciles RBF and adaptive wavelet method to solve the ...

متن کامل

Adaptive Wavelet Methods for Differential Equations

In this thesis we study stable Wavelet Galerkin schemes for solving initial value problems. The methods use the Daubechies family of orthogonal wavelets as bases for the solution. Their order of convergence is p− 1, where p is the number of vanishing moments of the wavelet function. Their stability regions are similar to those for BDF multistep methods of the same order. Due to the nature of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1998