Inference for Zero Inflated Truncated Power Series Family of Distributions

ثبت نشده
چکیده

Zero-inflated data indicates that the data set contains an excessive number of zeros. The word zero-inflation is used to emphasize that the probability mass at the point zero exceeds than the one allowed under a standard parametric family of discrete distributions. Gupta et al. [1], Murat & Szynal [2], Patil & Shirke [3] have contributed to estimation and testing of the parameters involved in Zero Inflated Power Series Distributions. If the data set under study does not contain observations after some known point in the support, we have to modify Zero Inflated Power Series Distribution (ZIPSD) accordingly in order to get better inferential properties. Zero Inflated Truncated Power Series Distribution (ZITPSD) is one of the better options. In the present work we address problem of estimation for ZITPSD with more emphasis on statistical tests. We provide three asymptotic tests for testing the parameter of ZITPSD, using an unconditional (standard) likelihood approach, a conditional likelihood approach and the sample mean, respectively. The performance of first two tests has been studied for Zero Inflated Truncated Poisson Distribution (ZITPD). Asymptotic Confidence Intervals for the parameter are also provided. The model has been applied to a real life data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference for Zero Inflated Truncated Power Series Family of Distributions

Zero-inflated data indicates that the data set contains an excessive number of zeros. The word zero-inflation is used to emphasize that the probability mass at the point zero exceeds than the one allowed under a standard parametric family of discrete distributions. Gupta et al. [1], Murat & Szynal [2], Patil & Shirke [3] have contributed to estimation and testing of the parameters involved in Z...

متن کامل

Introducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz

In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...

متن کامل

Comments on Multiparameter Estimation in Truncated Power Series Distributions under the Stein's Loss

This comment is to show that Theorem3.3 of Dey and Chung (1991) (Multiparameter estimation intruncated power series distributions under the Stein's loss.emph{Commun. Statist.-Theory Meth.,} {bf 20}, 309-326) may giveus misleading results. Analytically and through simulation, weshow that the Theorem does not improve the given estimator.

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

A New Class of Zero-Inflated Logarithmic Series Distribution

Through this paper we suggest an alternative form of the modified zero-inflated logarithmic series distribution of Kumar and Riyaz (Statistica, 2013) and study some of its important aspects. The method of maximum likelihood is employed for estimating the parameters of the distribution and certain test procedures are considered for testing the significance of the additional parameter of the model. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017