Latent Bayesian melding for integrating individual and population models

نویسندگان

  • Mingjun Zhong
  • Nigel H. Goddard
  • Charles A. Sutton
چکیده

In many statistical problems, a more coarse-grained model may be suitable for population-level behaviour, whereas a more detailed model is appropriate for accurate modelling of individual behaviour. This raises the question of how to integrate both types of models. Methods such as posterior regularization follow the idea of generalized moment matching, in that they allow matching expectations between two models, but sometimes both models are most conveniently expressed as latent variable models. We propose latent Bayesian melding, which is motivated by averaging the distributions over populations statistics of both the individual-level and the population-level models under a logarithmic opinion pool framework. In a case study on electricity disaggregation, which is a type of singlechannel blind source separation problem, we show that latent Bayesian melding leads to significantly more accurate predictions than an approach based solely on generalized moment matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Melding of Deterministic Models and Kriging for Analysis of Spatially Dependent Data

The link between geographic information systems and decision making approach own the invention and development of spatial data melding method. These methods combine different data sets, to achieve better results. In this paper, the Bayesian melding method for combining the measurements and outputs of deterministic models and kriging are considered. Then the ozone data in Tehran city are analyze...

متن کامل

Integrating latent-factor and knowledge-tracing models to predict individual differences in learning

An effective tutor—human or digital—must determine what a student does and does not know. Inferring a student’s knowledge state is challenging because behavioral observations (e.g., correct vs. incorrect problem solution) provide only weak evidence. Two classes of models have been proposed to address the challenge. Latent-factor models employ a collaborative filtering approach in which data fro...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Process-based Bayesian Melding of Occupational Exposure Models and Industrial Workplace Data

In industrial hygiene a worker’s exposure to chemical, physical and biological agents is increasingly being modeled using deterministic physical models. However, predicting exposure in real workplace settings is challenging and approaches that simply regress on a physical model (e.g. straightforward non-linear regression) are less effective as they do not account for biases attributable, at lea...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015