The Effect of Substrates / Ligands on Metal Nanocatalysts Investigated By Quantitative Z- Contrast Imaging and High Resolution Electron Microscopy

نویسندگان

  • Huiping Xu
  • Laurent Menard
  • Anatoly Frenkel
  • Ralph Nuzzo
  • Duane Johnson
  • Judith Yang
چکیده

Our direct density function-based simulations of Ru-, Ptand mixed Ru-Pt clusters on carbon-based supports reveal that substrates can mediate the PtRu5 particles [1]. Oblate structure of PtRu5 on C has been found [2]. Nevertheless, the cluster-substrate interface interactions are still unknown. In this work, we present the applications of combinations of quantitative zcontrast imaging and high resolution electron microscopy in investigating the effect of different substrates and ligand shells on metal particles. Specifically, we developed a relatively new and powerful method to determine numbers of atoms in a nanoparticle as well as three-dimensional structures of particles including size and shape of particles on the substrates by very high angle (~96mrad) annular dark-field (HAADF) imaging [2-4] techniques. Recently, we successfully synthesize icosahedra Au13 clusters with mixed ligands and cuboctahedral Au13 cores with thiol ligands, which have been shown by TEM to be of sub-nanometer size (0.84nm) and highly monodisperse narrow distribution. X-ray absorption and UV-visible spectra indicate many differences between icosahedra and cuboctahedral Au13 cores. Particles with different ligands show different emissions and higher quantum efficiency has been found in Au11 (PPH3) SC12)2Cl2. We plan to deposit those ligands-protected gold clusters onto different substrates, such as, TiO2 and graphite, etc. Aforementioned analysis procedure will be performed for those particles on the substrates and results will be correlated with that of our simulations and activity properties. This approach will lead to an understanding of the cluster-substrates relationship for consideration in real applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Catalyst on the Growth of Diamond-like Carbon by HFCVD

Diamond like carbon (DLC) film was grown by hot filament chemical vapor deposition (HFCVD)technique. In the present work, we investigated the quality of the DLC films groew on the substratesthat were coated with various metal nanocatalysts (Au and Ni). A combination of CH4/Ar/H2 rendersthe growth of carbon nanostructures technique (diamond like carbon). The utilized samples werecharacterized by...

متن کامل

QUANTITATIVE STUDY OF Au CATALYTIC NANOPARTICLES BY STEM AND HRTEM

The highly dispersed metal (e.g. Au) nanoparticles have exhibited exceptional catalytic activity for several reactions, including CO oxidation. Their high catalytic activity has been attributed to nanoparticles nano-structural effects (including cluster thickness, shape, chemical information, and number of atoms of the cluster). The three dimensional exact structure and chemical bonding state o...

متن کامل

Evaluation of the Effect of Ni-Co NPs for the Effective Growth of Carbon Nanotubes by TCVD System

A systematic study was conducted to understand the influences of catalyst combination as Ni-Co NPs on carbon nanotubes (CNTs) grown by Chemical Vapor Deposition (TCVD). The DC-sputtering system was used to prepare Co and Ni-Co thin films on silicon substrate. Ni- Co nanoparticles were used as metal catalyst for growing carbon nanotubes from acetylene (C2H2) gas in 850 ̊ C during 15 min. Carb...

متن کامل

Quantitative Z-contrast Imaging in Scanning Transmission Electron Microscopy of Zeolite-supported Metal Clusters and Single-metal-atom Complexes With Single-Atom Sensitivity

Supported metal catalysts, in particular noble metals supported on zeolites and oxides, are widely applied in large-scale processes, such as petroleum refining, petrochemical conversion, and automobile exhaust conversion. A crucial challenge in studying these catalysts lies in their complex nature, including non-uniform supports, variable sizes, shapes, and distributions of metal species and mu...

متن کامل

Effect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates

The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005