The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey.
نویسندگان
چکیده
Neurons in the lateral intraparietal area of the monkey (LIP) have visual receptive fields in retinotopic coordinates when studied in a fixation task. However, in the period immediately surrounding a saccade these receptive fields often shift, so that a briefly flashed stimulus outside the receptive field will drive the neurons if the eye movement will bring the spatial location of that vanished stimulus into the receptive field. This is equivalent to a transient shift of the retinal receptive field. The process enables the monkey brain to process a stimulus in a spatially accurate manner after a saccade, even though the stimulus appeared only before the saccade. We studied the time course of this receptive field shift by flashing a task-irrelevant stimulus for 100 ms before, during, or after a saccade. The stimulus could appear in receptive field as defined by the fixation before the saccade (the current receptive field) or the receptive field as defined by the fixation after the saccade (the future receptive field). We recorded the activity of 48 visually responsive neurons in LIP of three hemispheres of two rhesus monkeys. We studied 45 neurons in the current receptive field task, in which the saccade removed the stimulus from the receptive field. Of these neurons 29/45 (64%) showed a significant decrement of response when the stimulus appeared 250 ms or less before the saccade, as compared with their activity during fixation. The average response decrement was 38% for those cells showing a significant (P < 0.05 by t-test) decrement. We studied 39 neurons in the future receptive field task, in which the saccade brought the spatial location of a recently vanished stimulus into the receptive field. Of these 32/39 (82%) had a significant response to stimuli flashed for 100 ms in the future receptive field, even 400 ms before the saccade. Neurons never responded to stimuli moved by the saccade from a point outside the receptive field to another point outside the receptive field. Neurons did not necessarily show any saccadic suppression for stimuli moved from one part of the receptive field to another by the saccade. Stimuli flashed <250 ms before the saccade-evoked responses in both the presaccadic and the postsaccadic receptive fields, resulting in an increase in the effective receptive field size, an effect that we suggest is responsible for perisaccadic perceptual inaccuracies.
منابع مشابه
Perisaccadic Receptive Field Expansion in the Lateral Intraparietal Area
Humans and monkeys have access to an accurate representation of visual space despite a constantly moving eye. One mechanism by which the brain accomplishes this is by remapping visual receptive fields around the time of a saccade. In this process a neuron can be excited by a probe stimulus in the current receptive field, and also simultaneously by a probe stimulus in the location that will be b...
متن کاملCoding of shape and position in macaque lateral intraparietal area.
The analysis of object shape is critical for both object recognition and grasping. Areas in the intraparietal sulcus of the rhesus monkey are important for the visuomotor transformations underlying actions directed toward objects. The lateral intraparietal (LIP) area has strong anatomical connections with the anterior intraparietal area, which is known to control the shaping of the hand during ...
متن کاملThe role of the lateral intraparietal area of the monkey in the generation of saccades and visuospatial attention.
The brain cannot monitor or react towards the entire world at a given time. Instead, using the process of attention, it selects objects in the world for further analysis. Neuronal activity in the monkey intraparietal area has the properties appropriate for a neuronal substrate of attention: instead of all objects being represented in the parietal cortex, only salient objects are. Such objects c...
متن کاملPerisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology
During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of ...
متن کاملMacaque Lateral Intraparietal Cortex Depends on the Forebrain
25 Our eyes are constantly moving, allowing us to attend to different visual objects in our 26 environment. With each eye movement, a given object activates an entirely new set of visual 27 neuron, yet we perceive a stable scene. One potential neural mechanism for stable perception is 28 the phenomenon of remapping. Neurons in lateral intraparietal cortex (area LIP), frontal eye 29 fields (FEF)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 89 3 شماره
صفحات -
تاریخ انتشار 2003