A Kernel-Based Semi-Naïve Bayesian Classifier Using P-Trees

نویسندگان

  • Anne M. Denton
  • William Perrizo
چکیده

A novel semi-naive Bayesian classifier is introduced that is particularly suitable to data with many attributes. The naive Bayesian classifier is taken as a starting point and correlations are reduced through joining of highly correlated attributes. Our technique differs from related work in its use of kernel-functions that systematically include continuous attributes rather than relying on discretization as a preprocessing step. This retains distance information within the attribute domains and ensures that attributes are joined based on their correlation for the particular values of the test sample. We implement a kernel-based semi-naive Bayesian classifier using P-Trees and demonstrate that it generally outperforms the naive Bayesian classifier as well as a discrete semi-naïve Bayesian classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and...

متن کامل

ارتقای کیفیت دسته‌بندی متون با استفاده از کمیته‌ دسته‌بند دو سطحی

Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...

متن کامل

Using Naïve Bayes Classifier to Accelerate Constructing Fuzzy Intrusion Detection Systems

453 AbstractA Bayesian classifier is one of the most widely used classifiers which possess several properties that make it surprisingly useful and accurate. It is illustrated that performance of Bayesian learning in some cases is comparable with neural networks and decision trees. Bayesian theorem suggests a straight forward process which is not based on search methods. This is the major point ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004