Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila.

نویسندگان

  • M L Parmentier
  • D Woods
  • S Greig
  • P G Phan
  • A Radovic
  • P Bryant
  • C J O'Kane
چکیده

Asymmetric cell division generates daughter cells with different developmental fates. In Drosophila neuroblasts, asymmetric divisions are characterized by (1) a difference in size between the two daughter cells and (2) an asymmetric distribution of cell fate determinants, including Prospero and Numb, between the two daughter cells. In embryonic neuroblasts, the asymmetric localization of cell fate determinants is under the control of the protein Inscuteable (Insc), which is itself localized asymmetrically as an apical crescent. Here, we describe a new Drosophila protein, Rapsynoid (Raps), which interacts in a two-hybrid assay with the signal transduction protein Galpha(i). We show that Raps is localized asymmetrically in dividing larval neuroblasts and colocalizes with Insc. Moreover, in raps mutants, the asymmetric divisions of neuroblasts are altered: (1) Insc is no longer asymmetrically localized in the dividing neuroblast; and (2) the neuroblast division produces two daughter cells of similar sizes. However, the morphologically symmetrical divisions of raps neuroblasts still lead to daughter cells with different fates, as shown by differences in gene expression. Our data show that Raps is a novel protein involved in the control of asymmetric divisions of neuroblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of partner of inscuteable, a Novel Player of Drosophila Asymmetric Divisions, Reveals Two Distinct Steps in Inscuteable Apical Localization

Asymmetric localization is a prerequisite for inscuteable (insc) to function in coordinating and mediating asymmetric cell divisions in Drosophila. We show here that Partner of Inscuteable (Pins), a new component of asymmetric divisions, is required for Inscuteable to asymmetrically localize. In the absence of pins, Inscuteable becomes cytoplasmic and asymmetric divisions of neuroblasts and mit...

متن کامل

A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila

BACKGROUND In the fruit fly Drosophila, the Inscuteable protein localises to the apical cell cortex in neuroblasts and directs both the apical-basal orientation of the mitotic spindle and the basal localisation of the protein determinants Numb and Prospero during mitosis. Asymmetric localisation of Inscuteable is initiated during neuroblast delamination by direct binding to Bazooka, an apically...

متن کامل

Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation.

Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite tha...

متن کامل

Inscuteable-dependent apical localization of the microtubule-binding protein Cornetto suggests a role in asymmetric cell division.

Drosophila neuroblasts divide asymmetrically along the apical-basal axis. The Inscuteable protein localizes to the apical cell cortex in neuroblasts from interphase to metaphase, but disappears in anaphase. Inscuteable is required for correct spindle orientation and for asymmetric localization of cell fate determinants to the opposite (basal) cell cortex. Here, we show that Inscuteable also dir...

متن کامل

The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila.

Delaminated neuroblasts in Drosophila function as stem cells during embryonic central nervous system development. They go through repeated asymmetric divisions to generate multiple ganglion mother cells, which divide only once more to produce postmitotic neurons. Snail, a zinc-finger transcriptional repressor, is a pan-neural protein, based on its extensive expression in neuroblasts. Previous r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 14  شماره 

صفحات  -

تاریخ انتشار 2000