Hamiltonians separable in cartesian coordinates and third-order integrals of motion

نویسنده

  • Simon Gravel
چکیده

We present in this article all Hamiltonian systems in E(2) that are separable in cartesian coordinates and that admit a third-order integral, both in quantum and in classical mechanics. Many of these superintegrable systems are new, and it is seen that there exists a relation between quantum superintegrable potentials, invariant solutions of the Korteweg-De Vries equation and the Painlevé transcendents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static Analysis of Triangular Plates

This paper may be regarded as a new numerical method for the analysis of triangular thin plates using the natural area coordinates. Previous studies on the solution of triangular plates with different boundary conditions are mostly based on the Rayleigh-Ritz principle which is performed in the Cartesian coordinates. Consequently, manipulation of the geometry and numerical calculation of the int...

متن کامل

Static Analysis of Triangular Plates

This paper may be regarded as a new numerical method for the analysis of triangular thin plates using the natural area coordinates. Previous studies on the solution of triangular plates with different boundary conditions are mostly based on the Rayleigh-Ritz principle which is performed in the Cartesian coordinates. Consequently, manipulation of the geometry and numerical calculation of the int...

متن کامل

Transforming Geocentric Cartesian Coordinates to Geodetic Coordinates by a New Initial Value Calculation Paradigm

Transforming geocentric Cartesian coordinates (X, Y, Z) to geodetic curvilinear coordinates (φ, λ, h) on a biaxial ellipsoid is one of the problems used in satellite positioning, coordinates conversion between reference systems, astronomy and geodetic calculations. For this purpose, various methods including Closed-form, Vector method and Fixed-point method have been developed. In this paper, a...

متن کامل

High-order finite-volume adaptive methods on locally rectangular grids

We are developing a new class of finite-volume methods on locally-refined and mapped grids, which are at least fourth-order accurate in regions where the solution is smooth. This paper discusses the implementation of such methods for time-dependent problems on both Cartesian and mapped grids with adaptive mesh refinement. We show 2D results with the Berger–Colella shock-ramp problem in Cartesia...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008