Syntaxin 8 impairs trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) and inhibits its channel activity.

نویسندگان

  • Frédéric Bilan
  • Vincent Thoreau
  • Magali Nacfer
  • Renaud Dérand
  • Caroline Norez
  • Anne Cantereau
  • Martine Garcia
  • Frédéric Becq
  • Alain Kitzis
چکیده

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-dependent chloride channel that mediates electrolyte transport across the luminal surface of epithelial cells. In this paper, we describe the CFTR regulation by syntaxin 8, a t-SNARE protein (target soluble N-ethylmaleimide-sensitive factor attachment protein receptor) involved in the SNARE endosomal complex. Syntaxin family members are key molecules implicated in diverse vesicle docking and membrane fusion events. We found that syntaxin 8 physically interacts with CFTR: recombinant syntaxin 8 binds CFTR in vitro and both proteins co-immunoprecipitate in HT29 cells. Syntaxin 8 regulates CFTR-mediated currents in chinese hamster ovary (CHO) cells stably expressing CFTR and syntaxin 8. Iodide efflux and whole-cell patch-clamp experiments on these cells indicate a strong inhibition of CFTR chloride current by syntaxin 8 overexpression. At the cellular level, we observed that syntaxin 8 overexpression disturbs CFTR trafficking. Confocal microscopy shows a dramatic decrease in green fluorescent protein-tagged CFTR plasma membrane staining, when syntaxin 8 is coexpressed in COS-7 cells. Using antibodies against Lamp-1, TfR or Rab11 we determined by immunofluorescence assays that both proteins are mainly accumulated in recycling endosomes. Our results evidence that syntaxin 8 contributes to the regulation of CFTR trafficking and chloride channel activity by the SNARE machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Functional regulation of cystic fibrosis transmembrane conductance regulator-containing macromolecular complexes: a small-molecule inhibitor approach.

CFTR (cystic fibrosis transmembrane conductance regulator) has been shown to form multiple protein macromolecular complexes with its interacting partners at discrete subcellular microdomains to modulate trafficking, transport and signalling in cells. Targeting protein-protein interactions within these macromolecular complexes would affect the expression or function of the CFTR channel. We speci...

متن کامل

The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channel

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel belongs to the ATP-binding cassette (ABC) transporter superfamily and regulates Cl- secretion in epithelial cells for water secretion. Loss-of-function mutations to the CFTR gene cause dehydrated mucus on the apical side of epithelial cells and increase the susceptibility of bacterial infection, especially in the airway ...

متن کامل

Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines

The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline ana...

متن کامل

P-192: The Study of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations and Polymorphisms in Iranian Patients with Mayer Rokitansky Kuster Hauser Syndrome

Background: Mayer - Rokitansky - Kuster - Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. Congenital anomaly of the female genital tract, estimated to occur in approximately 1 in every 5,000 females. It is caused by a failure of deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2004