Characterization and Uncertainty Assessment of a Certified Reference Material of Chloramphenicol in Methanol (GBW(E)082557)

نویسندگان

  • Mengrui Yang
  • Min Wang
  • Jian Zhou
  • Yinqing Song
  • Tongtong Wang
چکیده

Prior to preparation of CRM candidate of chloramphenicol in methanol with a concentration of 100 mg/L, two independent methods including mass balance (MB) and quantitative nuclear magnetic resonance (qNMR) were employed to precisely measure the mass fraction of pure chloramphenicol materials. The mass fraction was assigned to be 99.8% with uncertainty of 0.3%. Homogeneity testing and stability study of chloramphenicol in methanol were examined by using high performance liquid chromatography. Additionally, the uncertainties originating from the process of CRM development were comprehensively evaluated. The experimental results indicate that the property value of this CRM is homogeneous and stable at 4°C for at least six months. The new CRM (GBW(E)082557) can be applicable to calibration of instrument and assurance of accuracy and comparability of results in routine measurement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of certified reference material for the quantification of water in bioethanol.

The National Metrology Institute of Japan has issued a certified reference material of bioethanol (NMIJ CRM 8301-a) for the quantification of water, methanol, sulfur, and copper. This paper presents technical details for the characterization of the water in NMIJ CRM 8301-a. The characterization was performed using coulometric and volumetric Karl-Fischer (KF) titrations. To reduce moisture absor...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Development of a new ferulic acid certified reference material for use in clinical chemistry and pharmaceutical analysis

This study compares the results of three certified methods, namely differential scanning calorimetry (DSC), the mass balance (MB) method and coulometric titrimetry (CT), in the purity assessment of ferulic acid certified reference material (CRM). Purity and expanded uncertainty as determined by the three methods were respectively 99.81%, 0.16%; 99.79%, 0.16%; and 99.81%, 0.26% with, in all case...

متن کامل

Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material

Digital polymerase chain reaction (dPCR) is a unique approach to measurement of the absolute copy number of target DNA without using external standards. However, the comparability of different dPCR platforms with respect to measurement of DNA copy number must be addressed before dPCR can be classified fundamentally as an absolute quantification technique. The comparability of four dPCR platform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016