DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

نویسندگان

  • Maneesh Sharma
  • Ginger B. Paige
  • Scott N. Miller
چکیده

Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM). High resolution ground-based Light Detecting and Ranging (LiDAR) technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM) for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model

The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...

متن کامل

Dem Generation from Airborne Lidar Data

Airborne Lidar (light detection and ranging) sensors provide dense height information of large areas in an efficient manner. But for the production of digital elevation model (DEM) from the point cloud, the filtering of the point cloud should be carried out in order to remove points representing surface of non-ground objects. According to the deficiencies of slope based method, a novel filterin...

متن کامل

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

Digital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning

The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010