Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils.
نویسندگان
چکیده
The apoptosis and subsequent clearance of eosinophils without histotoxic mediator release is thought to be crucial in the resolution of airway inflammation in asthma. Interleukin-5 (IL-5) is a potent suppressor of eosinophil apoptosis. The mechanism by which IL-5 inhibits spontaneous eosinophil apoptosis was investigated. Freshly isolated eosinophils constitutively expressed the conformationally active form of Bax in the cytosol and nucleus. During spontaneous and staurosporine-induced apoptosis, Bax underwent a caspase-independent translocation to the mitochondria, which was inhibited by IL-5. Eosinophil apoptosis was associated with the release of cytochrome c from the mitochondria, which was also inhibited by IL-5. IL-5 and the cell-permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), prevented phosphatidylserine (PS) externalization, although only IL-5 inhibited loss of mitochondrial membrane potential (DeltaPsim). Peripheral blood eosinophils endogenously expressed "initiator" caspase-8 and -9, and "effector" caspase-3, -6, and -7. Spontaneous eosinophil apoptosis was associated with processing of caspase-3, -6, -7, -8, and -9. IL-5 and z-VAD.fmk prevented caspase activation in spontaneous apoptosis. The results suggest that spontaneous eosinophil apoptosis involves Bax translocation to the mitochondria, cytochrome c release, caspase-independent perturbation of the mitochondrial membrane, and subsequent activation of caspases. IL-5 inhibits spontaneous eosinophil apoptosis at a site upstream of Bax translocation.
منابع مشابه
Preservation of Mitochondrial Structure and Function after Bid- or Bax-Mediated Cytochrome c Release
Proapoptotic members of the Bcl-2 protein family, including Bid and Bax, can activate apoptosis by directly interacting with mitochondria to cause cytochrome c translocation from the intermembrane space into the cytoplasm, thereby triggering Apaf-1-mediated caspase activation. Under some circumstances, when caspase activation is blocked, cells can recover from cytochrome c translocation; this s...
متن کاملp38 Mitogen-activated protein kinase regulates Bax translocation in cyanide-induced apoptosis.
Execution of cyanide-induced apoptosis is mediated by release of cytochrome c from mitochondria. To determine how cyanide initiates cytochrome c release, Bax translocation was investigated in primary cultures of cortical neurons. Under nonapoptotic (control) conditions, Bax resided predominantly in the cytoplasm. After 300-microM cyanide treatment for 1 h, Bax translocated to the mitochondria, ...
متن کاملComparison Cytotoxic Effects of Mangifera Indica L. and Juglans Regia Aqueous Extract on Human Chronic Lymphocytic Leukemia
Natural products isolated from plant sources are well known for their pharmacological potential in diversity of disease treatments such as inflammatory or cancer conditions. Mango (Mangifera indica L.) and Juglans regia are thought to be rich of functional phytochemicals. To elucidate the anticancer activity of Juglans regia (JR) and Mangifera indica L (MI) aqueous extract were investigated on ...
متن کاملComparison Cytotoxic Effects of Mangifera Indica L. and Juglans Regia Aqueous Extract on Human Chronic Lymphocytic Leukemia
Natural products isolated from plant sources are well known for their pharmacological potential in diversity of disease treatments such as inflammatory or cancer conditions. Mango (Mangifera indica L.) and Juglans regia are thought to be rich of functional phytochemicals. To elucidate the anticancer activity of Juglans regia (JR) and Mangifera indica L (MI) aqueous extract were investigated on ...
متن کاملBAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases.
Members of the BCL-2 family of proteins either promote or repress programmed cell death. Here we report that neonatal sympathetic neurons undergoing apoptosis after nerve growth factor (NGF) deprivation exhibited a protein synthesis-dependent, caspase-independent subcellular redistribution of BAX from cytosol to mitochondria, followed by a loss of mitochondrial cytochrome c and cell death. Trea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 98 7 شماره
صفحات -
تاریخ انتشار 2001