A Set-Theoretic Algorithm for Real-Time Terrain Mapping of Mobile Robots in Outdoor Environments
نویسندگان
چکیده
In this paper, we address the problem of mapping outdoor rough terrain environments for mobile robots. While uncertainties arising from multiple sources are considered explicitly and assumed to be unknownbut-bounded, a set-theoretic framework is proposed to construct the terrain model as a set-valued elevation map that extends the notion of the elevation map with elevation variation in each cell stored by intervals. The localization problem of the mobile robot is also considered and solved by a set-membership filter in order to provide guaranteed bounded-pose estimation, which can be incorporated to the elevation map to improve the accuracy of the final terrain model. A more compact terrain representation can be obtained by the proposed algorithm with relatively low computational complexity, which makes it suitable for real-time applications. Furthermore, improved smoothness is achieved by the inherent conservativeness of the set-theoretic method without additional filtering or interpolation processes. Simulations as well as real-life experiments of a mobile robot operating in outdoor rough terrain environments with a 2D scanning laser rangefinder demonstrate the effectiveness and robustness of the proposed method.
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملDomain Adaptation For Mobile Robot Navigation
An important challenge in outdoor mobile robotic perception is maintaining terrain classification performance throughout the extremely variable conditions that we may wish a robot to operate under. Outdoor robots operate in a series of “environments” that consist of diverse terrain, vegetation, weather, and lighting conditions. A physical robot does not randomly jump between environments; typic...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملTerrain Mapping and Classification in Outdoor Environments Using Neural Networks
This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, ...
متن کاملEnhancing Fuzzy Robot Navigation Systems by Mimicking Human Visual Perception of Natural Terrain Traversability
This paper presents a technique for learning to assess terrain traversability for outdoor mobile robot navigation using human-embedded logic and real-time perception of terrain features extracted from image data. The methodology utilizes a fuzzy logic framework and vision algorithms for analysis of the terrain. The terrain assessment and learning methodology is tested and validated with a set o...
متن کامل