J un 2 00 9 SUPPORTS OF WEIGHT MODULES OVER WITT ALGEBRAS
نویسنده
چکیده
In this paper, as the first step towards classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe supports of such modules. We also obtain some descriptions on the support of an arbitrary simple weight module over a Z-graded Lie algebra g having a root space decomposition ⊕α∈Zngα with respect to the abelian subalgebra g0, with the property [gα, gβ] = gα+β for all α, β ∈ Z, α 6= β (this class contains the algebra Wn).
منابع مشابه
Supports of Weight Modules over Witt Algebras
In this paper, as the first step towards classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe supports of such modules. We also obtain some descriptions on the support of an arbitrary simple weight module over a Z-graded Lie algebra g having a root space decomposition ⊕α∈Zngα with respect to the abelian subalgebra g0, with t...
متن کاملClassification of Harish-Chandra Modules over the Higher Rank Virasoro Algebras
We classify the Harish-Chandra modules over the higher rank Virasoro and super-Virasoro algebras: It is proved that a Harish-Chandra module, i.e., an irreducible weight module with finite weight multiplicities, over a higher rank Virasoro or super-Virasoro algebra is a module of the intermediate series. As an application, it is also proved that an indecomposable weight module with finite weight...
متن کاملar X iv : 0 90 1 . 02 18 v 1 [ m at h . R T ] 2 J an 2 00 9 GRADED SPECHT MODULES
Recently, the first two authors have defined a Z-grading on group algebras of symmetric groups and more generally on the cyclotomic Hecke algebras of type G(l, 1, d). In this paper we explain how to grade Specht modules over these algebras.
متن کاملar X iv : f un ct - a n / 97 07 00 9 v 1 2 8 Ju l 1 99 7 One - parameter representations on C ∗ - algebras
Strongly continuous one-parameter representations on a C *-algebra A and their extension to the multiplier algebra are investigated. We also give a proof of the Stone theorem on Hilbert C *-modules and look into some related problems.
متن کامل2 7 N ov 2 00 3 PBW bases for a class of braided Hopf algebras ⋆
We prove the existence of a basis of Poincaré-Birkhoff-Witt type for braided Hopf algebras R generated by a braided subspace V ⊂ P (R) if the braiding on V fulfils a triangularity condition. We apply our result to pointed Hopf algebras with abelian coradical and to Nichols algebras of low dimensional simple Uq(sl2)-modules.
متن کامل