L1-norm Principal-Component Analysis of Complex Data

نویسندگان

  • Nicholas Tsagkarakis
  • Panos P. Markopoulos
  • Dimitris A. Pados
چکیده

L1-norm Principal-Component Analysis (L1-PCA) of real-valued data has attracted significant research interest over the past decade. However, L1-PCA of complex-valued data remains to date unexplored despite the many possible applications (e.g., in communication systems). In this work, we establish theoretical and algorithmic foundations of L1-PCA of complex-valued data matrices. Specifically, we first show that, in contrast to the real-valued case for which an optimal polynomial-cost algorithm was recently reported by Markopoulos et al., complex L1-PCA is formally NPhard in the number of data points. Then, casting complex L1-PCA as a unimodular optimization problem, we present the first two suboptimal algorithms in the literature for its solution. Our experimental studies illustrate the sturdy resistance of complex L1-PCA against faulty measurements/outliers in the processed data. Index Terms — Data analytics, dimensionality reduction, erroneous data, faulty measurements, L1-norm, machine learning, principal-component analysis, outlier resistance. ∗Corresponding author. Some preliminary studies related to this paper were presented at the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, in June 2015 [1]. This work was supported in part by the National Science Foundation under Grant ECCS-1462341 and the Office of the Vice President for Research of the Rochester Institute of Technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direction finding by complex L1-principal-component analysis

In the light of recent developments in optimal real L1-norm principal-component analysis (PCA), we provide the first algorithm in the literature to carry out L1-PCA of complexvalued data. Then, we use this algorithm to develop a novel subspace-based direction-of-arrival (DoA) estimation method that is resistant to faulty measurements or jamming. As demonstrated by numerical experiments, the pro...

متن کامل

L1-norm-based (2D)PCA

Traditional bidirectional two-dimension (2D) principal component analysis ((2D)PCA-L2) is sensitive to outliers because its objective function is the least squares criterion based on L2-norm. This paper proposes a simple but effective L1-norm-based bidirectional 2D principal component analysis ((2D)PCA-L1), which jointly takes advantage of the merits of bidirectional 2D subspace learning and L1...

متن کامل

L1-norm Principal-Component Analysis in L2-norm-reduced-rank Data Subspaces

Standard Principal-Component Analysis (PCA) is known to be very sensitive to outliers among the processed data. On the other hand, in has been recently shown that L1-norm-based PCA (L1-PCA) exhibits sturdy resistance against outliers, while it performs similar to standard PCA when applied to nominal or smoothly corrupted data. Exact calculation of the K L1-norm Principal Components (L1-PCs) of ...

متن کامل

A pure L1L1-norm principal component analysis

The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes that recast PCA as an optimization pro...

متن کامل

Optimal sparse L1-norm principal-component analysis

We present an algorithm that computes exactly (optimally) the S-sparse (1≤S<D) maximum-L1-norm-projection principal component of a real-valued data matrix X ∈ RD×N that contains N samples of dimension D. For fixed sample support N , the optimal L1-sparse algorithm has linear complexity in data dimension, O (D). For fixed dimension D (thus, fixed sparsity S), the optimal L1-sparse algorithm has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.01249  شماره 

صفحات  -

تاریخ انتشار 2017