Mechanisms of length history-dependent tension in an ionic model of the cardiac myocyte.

نویسندگان

  • Wolfgang F Bluhm
  • Wilbur Y W Lew
  • Alan Garfinkel
  • Andrew D McCulloch
چکیده

The ionic model of the ventricular myocyte developed by Luo and Rudy ( Circ. Res. 74: 1071-1096, 1994) was used to investigate potential mechanisms of the slow changes in stress (SCS) that follow step changes in muscle length. A step change in myofilament sensitivity alone caused an immediate increase in active tension, but no SCS. The effects of additional step changes in the parameters of sarcolemmal ion fluxes were examined for each ion flux in the model. Changes in the coefficients of Ca2+ or K+ channels did not produce SCS. SCS was produced by step changes in parameters of the Na+-K+pump or the Na+ leak current. This simulated mechanism was mediated through a slow increase in intracellular Na+ concentration and a resulting increase in systolic Ca2+ entry through the Na+/Ca2+exchanger. The model reproduced the effects of several experimental interventions such as sarcoplasmic reticulum Ca2+ depletion, "diastolic" length changes, and changes in extracellular Ca2+. Thus SCS in cardiac muscle may be caused by length-induced changes in sarcolemmal Na+ fluxes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular mechanisms for the slow phase of the Frank-Starling response.

Following a step increase in sarcomere length, isometric cardiac muscle tension increases instantaneously by the Frank-Starling mechanism. In isolated papillary muscle and myocytes, there is an additional significant rise in developed tension over the following 15 min due to an unknown mechanism. This slow change in tension could not be explained by mechanical heterogeneity of the muscle prepar...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

The Different Mechanisms of Action Potential Propagation in the Heart

It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...

متن کامل

The Different Mechanisms of Action Potential Propagation in the Heart

It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 274 3  شماره 

صفحات  -

تاریخ انتشار 1998