Neural Network Adaptive Control for a Class of Matched SISO Nonlinear Uncertain Systems With Zero Dynamics
نویسندگان
چکیده
The paper presents a direct adaptive tracking control scheme for a class of matched SISO affine nonlinear uncertain systems with zero dynamic using neural network. Through neural network approximation, neural network is used as the emulator of the unknown ideal controller. A quadratic cost function of the error between the unknown ideal controller and the used neural network controller is minimized using a gradient descent method to adjust parameters in neural network. The convergence of parameters and the uniformly ultimately boundedness of tracking error and all states of the closed-loop system are guaranteed based on Lyapunov stability theorem. The effectiveness of the proposed controller is illustrated through the simulation results.
منابع مشابه
Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملAdaptive Neural Network Tracking Control for a Class of SISO Affine Nonlinear Uncertain Systems
A direct adaptive neural network tracking control scheme is presented for a class of SISO affine nonlinear uncertain systems. Uncertainties meet the match conditions. Parameters in neural networks are updated using a gradient descent method which designed in order to minimize a quadratic cost function of the error between the unknown ideal implicit controller and the used neural networks contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 7 شماره
صفحات -
تاریخ انتشار 2012