Linear Combinations of Optic Flow Vectors for Estimating Self-Motion - a Real-World Test of a Neural Model

نویسندگان

  • Matthias O. Franz
  • Javaan S. Chahl
چکیده

The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wide - Field , Motion - Sensitive Neurons and Optimal Matched Filters for Optic Flow

We present a theory for the construction of an optimal matched lter for self-motion induced optic ow elds. The matched lter extracts local ow components along a set of pre-de ned directions and weights them according to an optimization principle which minimizes the di erence between estimated and real egomotion parameters. In contrast to previous approaches, prior knowledge about distance and t...

متن کامل

Biological motion cues aid identification of self-motion from optic flow but not heading detection.

When we move through the world, a pattern of expanding optic flow is generated on the retina. In completely rigid environments, this pattern signals one's direction of heading and is an important source of information for navigation. When we walk towards an oncoming person, the optic environment is not rigid, as the motion vectors generated by the other person represent a composite of that pers...

متن کامل

ارزیابی مدل‌های شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در تخمین داده‌های گم شده جریان روزانه (مطالعه موردی: ایستگاه هیدرومتری سنته- استان کردستان)

Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh...

متن کامل

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

متن کامل

Optic Flow Field Segmentation and Motion Estimation Using a Robust Genetic Partitioning Algorithm

Optic flow motion analysis represents an important family of visual information processing techniques in computer vision. Segmenting an optic flow field into coherent motion groups and estimating each underlyiiig motion is a very challenging task when the optic flow field is projected from a scene of several independently moving objects. The problem is further complicated if the optic flow data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002