Computational prediction of host-pathogen protein-protein interactions
نویسندگان
چکیده
MOTIVATION Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. RESULTS We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. AVAILABILITY Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Progress in Computational Studies of Host-pathogen Interactions
Host-pathogen interactions are important for understanding infection mechanism and developing better treatment and prevention of infectious diseases. Many computational studies on host-pathogen interactions have been published. Here, we review recent progress and results in this field and provide a systematic summary, comparison and discussion of computational studies on host-pathogen interacti...
متن کاملComputational approaches for prediction of pathogen-host protein-protein interactions
Infectious diseases are still among the major and prevalent health problems, mostly because of the drug resistance of novel variants of pathogens. Molecular interactions between pathogens and their hosts are the key parts of the infection mechanisms. Novel antimicrobial therapeutics to fight drug resistance is only possible in case of a thorough understanding of pathogen-host interaction (PHI) ...
متن کاملIssues in performance evaluation for host-pathogen protein interaction prediction
The study of interactions between host and pathogen proteins is important for understanding the underlying mechanisms of infectious diseases and for developing novel therapeutic solutions. Wet-lab techniques for detecting protein-protein interactions (PPIs) can benefit from computational predictions. Machine learning is one of the computational approaches that can assist biologists by predictin...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملRabies Infection: An Overview of Lyssavirus-Host Protein Interactions
Viruses are obligatory intracellular parasites that use cell proteins to take the control of the cell functions in order to accomplish their life cycle. Studying the viral-host interactions would increase our knowledge of the viral biology and mechanisms of pathogenesis. Studies on pathogenesis mechanisms of lyssaviruses, which are the causative agents of rabies, have revealed some important ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2007