Adaptive Covariance Matrix Estimation through Block Thresholding
نویسنده
چکیده
Estimation of large covariance matrices has drawn considerable recent attention, and the theoretical focus so far has mainly been on developing a minimax theory over a fixed parameter space. In this paper, we consider adaptive covariance matrix estimation where the goal is to construct a single procedure which is minimax rate optimal simultaneously over each parameter space in a large collection. A fully data-driven block thresholding estimator is proposed. The estimator is constructed by carefully dividing the sample covariance matrix into blocks and then simultaneously estimating the entries in a block by thresholding. The estimator is shown to be optimally rate adaptive over a wide range of bandable covariance matrices. A simulation study is carried out and shows that the block thresholding estimator performs well numerically. Some of the technical tools developed in this paper can also be of independent interest.
منابع مشابه
Minimax and Adaptive Estimation of Covariance Operator for Random Variables Observed on a Lattice Graph
Covariance structure plays an important role in high dimensional statistical inference. In a range of applications including imaging analysis and fMRI studies, random variables are observed on a lattice graph. In such a setting it is important to account for the lattice structure when estimating the covariance operator. In this paper we consider both minimax and adaptive estimation of the covar...
متن کاملAdaptive Thresholding for Sparse Covariance Matrix Estimation
In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covarianc...
متن کاملLarge Covariance Estimation by Thresholding Principal Orthogonal Complements.
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (PO...
متن کاملBlock-diagonal covariance selection for high-dimensional Gaussian graphical models
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based ...
متن کامل