Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride
نویسندگان
چکیده
Fatigue and fracture mechanisms have been studied in a steel-based metal matrix composite (MMC), comprising a 316L austenitic matrix reinforced with 25 wt% particulate titanium diboride (TiB2). The fracture toughness was determined in the as-HIPped condition as being slightly below 30 MPa√m. Fatigue crack growth rates have been determined, and corrected for the effects of crack closure. The fracture surfaces have been studied to determine the mechanisms of damage during crack advance, which are determined as matrix fatigue, reinforcement particle fracture, and ductile rupture of the matrix. We show that the occurrence of damage mechanisms during fatigue of the material is linked to Kmax, rather than to ∆K. This is rationalised in terms of a semi-cohesive process zone within the monotonic plastic zone ahead of the crack tip.
منابع مشابه
Fatigue Crack Growth in a Particulate TiB2-Reinforced Powder Metallurgy Iron-Based Composite
Fatigue crack growth behavior has been examined in a particulate titanium diboride (TiB2)–reinforced iron-based composite that had been produced via a mechanical alloying process. Comparison with equivalent unreinforced material indicated that fatigue crack growth resistance in the composite was superior to monolithic matrix material in the near-threshold regime. The composite exhibited relativ...
متن کاملFlexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning
Fibre metal laminates (FMLs) have appeared as the most suitable materials for shipbuilding, aeronautical and aerospace applications due to their superior mechanical properties over traditional materials. In this paper, degradation in flexural and impact properties of glass fibre/epoxy composite (GF/E composite) and stainless steel glass fibre/epoxy fibre metal laminate (SS FML) due to hygrother...
متن کاملFriction Stir Processing of Particle Reinforced Composite Materials
The objective of this article is to provide a review of friction stir processing (FSP) technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesi...
متن کاملCarbon Fibre Composite Bone Plates
We compared the mechanical properties of carbon fibre composite bone plates with those of stainless steel and titanium. The composite plates have less stiffness with good fatigue properties. Tissue culture and small animal implantation confirmed the biocompatibility of the material. We also present a preliminary report on the use of the carbon fibre composite plates in 40 forearm fractures. All...
متن کاملEffect of Weld Metal Microstructure on the Fatigue and Corrosion-Fatigue Properties of GTA-Welded 304 Stainless Steel
In this research, two different filler metals, ERNiCrMo-3 and ER309L, were used for developing different microstructure, austenite (γ) and austenite and ferrite (γ+δ) in the weld metal and fatigue properties of welded samples were evaluated in the air and sea water environments. Microstructural studies indicated a good agreement between predicted microstructures via schiffler diagram and metall...
متن کامل