Eigenvalue Asymptotics of the Neumann Laplacian of Regions and Manifolds with Cusps

نویسنده

  • V. JAKSIC
چکیده

We study the eigenvalue asymptotics of a Neumann Laplacian-A$ in unbounded regions 0 of R2 with cusps at infinity (a typical example is a={(~, y)~R~:x>l, Iyl-ce-" I}) and prove that NE(A:)-NE(HY)+ E/2 Vol(Q), where HV is the canonical one-dimensional Schrodinger operator associated to the problem. We establish a similar formula for manifolds with cusps and derive the eigenvalue asymptotics of a Dirichlet Laplacian-A: for a class of cusp-type regions of infinite volume. e 1992 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

The Spectrum of Schrödinger Operators and Hodge Laplacians on Conformally Cusp Manifolds

We describe the spectrum of the k-form Laplacian on conformally cusp Riemannian manifolds. The essential spectrum is shown to vanish precisely when the k and k − 1 de Rham cohomology groups of the boundary vanish. We give Weyl-type asymptotics for the eigenvalue-counting function in the purely discrete case. In the other case we analyze the essential spectrum via positive commutator methods and...

متن کامل

Asymptotics and Estimates for Eigenelements of Laplacian with Frequent Nonperiodic Interchange of Boundary Conditions

We consider singular perturbed eigenvalue problem for Laplace operator in a two-dimensional domain. In the boundary we select a set depending on a character small parameter and consisting of a great number of small disjoint parts. On this set the Dirichlet boundary condition is imposed while on the rest part of the boundary we impose the Neumann condition. For the case of homogenized Neumann or...

متن کامل

Uniform Bounds for Eigenfunctions of the Laplacian on Manifolds with Boundary

Let u be an eigenfunction of the Laplacian on a compact manifold with boundary, with Dirichlet or Neumann boundary conditions, and let −λ2 be the corresponding eigenvalue. We consider the problem of estimating maxM u in terms of λ, for large λ, assuming ∫ M u 2 = 1. We prove that maxM u ≤ CMλ (n−1)/2, which is optimal for some M . Our proof simplifies some of the arguments used before for such ...

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991