Neutral-fragmentation paths of methane induced by intense ultrashort IR laser pulses: ab initio molecular orbital approach.

نویسندگان

  • Shiro Koseki
  • Noriyuki Shimakura
  • Yoshiaki Teranishi
  • Sheng Hsien Lin
  • Yuichi Fujimura
چکیده

Instantaneous (laser-field-dependent) potential energy curves leading to neutral fragmentations of methane were calculated at several laser intensities from 1.4 × 10(13) to 1.2 × 10(14) W/cm(2) (from 1.0 × 10(10) to 3.0 × 10(10) V/m) using ab initio molecular orbital (MO) methods to validate the observation of neutral fragmentations induced by intense femtosecond IR pulses (Kong et al. J. Chem. Phys. 2006, 125, 133320). Two fragmentation paths, CH(2) + 2H and CH(2) + H(2), in (1)T(2) superexcited states that are located in the energy range of 12-16 eV were considered as the reaction paths because these states are responsible for Jahn-Teller distortion opening up reaction paths during ultrashort pulses. As field intensity increased, the low-lying excited (1)A(1) states originated from the Jahn-Teller (1)T(2) states were substantially stabilized along the neutral-fragment path CH(4) → CH(2) + 2H and were located below the ionization threshold. On the other hand, the low-lying excited (1)B(1) states, which also originate from the Jahn-Teller (1)T(2) states, were embedded on the ionized state along the dissociation path to CH(2) + H(2). This indicates that ionic fragments, rather than neutral ones, are produced along the CH(2) + H(2) path. The computational results support neutral fragmentations through superexcited states proposed by Kong et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionization of Molecular Hydrogen in Ultrashort Intense Laser Pulses

A novel ab initio numerical approach is developed and applied that solves the time-dependent Schrödinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality....

متن کامل

Nonsequential and sequential fragmentation of CO2(3+) in intense laser fields.

We experimentally studied the three-body fragmentation dynamics of CO(2) initiated by intense femtosecond laser pulses. Sequential and nonsequential fragmentations were precisely separated and identified for CO(2)(3+) to break up into O(+) + C(+) + O(+) ions. With accurate measurements of three-dimensional momentum vectors of the correlated atomic ions and calculations of the high-level ab init...

متن کامل

Signatures of nonthermal melting

Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing no...

متن کامل

Photoexfoliation of graphene from graphite: an ab initio study.

We propose to use ultrashort laser pulses to detach intact graphene monolayers from a graphite surface, one at a time. As suggested by a combination of real-time ab initio time-dependent density functional calculations for electrons with molecular dynamics simulations for ions, this athermal exfoliation process follows exposure to femtosecond laser pulses with a wavelength of 800 nm and the ful...

متن کامل

Post ionization alignment of the fragmentation of molecules in an ultrashort intense laser field

We studied the angular distributions of the fragmented ions of diatomic molecules in an intense linearly polarized short laser pulse. In addition to the well-known dynamic alignment of the neutral molecules before ionization, we identified a more important post ionization alignment effect of the molecular ions. The latter is modelled quantum mechanically as resulting from the breakup of a rotat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 2013