Error Estimates for the ANOVA Method with Polynomial Chaos Interpolation: Tensor Product Functions
نویسندگان
چکیده
We focus on the analysis of variance (ANOVA) method for high dimensional function approximation using Jacobi polynomial chaos to represent the terms of the expansion. First, we develop a weight theory inspired by quasi-Monte Carlo theory to identify which functions have low effective dimension using the ANOVA expansion in different norms. We then present estimates for the truncation error in the ANOVA expansion and for the interpolation error using multielement polynomial chaos in the weighted Korobov spaces over the unit hypercube. We consider both the standard ANOVA expansion using the Lebesgue measure and the anchored ANOVA expansion using the Dirac measure. The optimality of different sets of anchor points is also examined through numerical examples.
منابع مشابه
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sa...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملDesign under Uncertainty Employing Stochastic Expansion Methods
Nonintrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification due to their fast convergence properties and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampli...
متن کاملSparse pseudospectral approximation method
Multivariate global polynomial approximations – such as polynomial chaos or stochastic collocation methods – are now in widespread use for sensitivity analysis and uncertainty quantification. The pseudospectral variety of these methods uses a numerical integration rule to approximate the Fourier-type coefficients of a truncated expansion in orthogonal polynomials. For problems in more than two ...
متن کاملSparse tensor discretizations of elliptic PDEs with random input data
We consider a stochastic Galerkin and collocation discretization scheme for solving elliptic PDEs with random coefficients and forcing term, which are assumed to depend on a finite, but possibly large number of random variables. Both methods consist of a hierarchic wavelet discretization in space and a sequence of hierarchic approximations to the law of the random solution in probability space....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012