Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization
نویسندگان
چکیده
We consider a distributed multi-agent network system where the goal is to minimize a sum of convex objective functions of the agents subject to a common convex constraint set. Each agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent combines weighted averages of the received iterates with its own iterate, and adjusts the iterate by using subgradient information (known with stochastic errors) of its own function and by projecting onto the constraint set. The goal of this paper is to explore the effects of stochastic subgradient errors on the convergence of the algorithm. We first consider the behavior of the algorithm in mean, and then the convergence with probability 1 and in mean square. We consider general stochastic errors that have uniformly bounded second moments and obtain bounds on the limiting performance of the algorithm in mean for diminishing and non-diminishing stepsizes. When the means of the errors diminish, we prove that there is mean consensus between the agents and mean convergence to the optimum function value for diminishing stepsizes. When the mean errors diminish sufficiently fast, we strengthen the results to consensus and convergence of the iterates to an optimal solution with probability 1 and in mean square.
منابع مشابه
Incremental Stochastic Subgradient Algorithms for Convex Optimization
This paper studies the effect of stochastic errors on two constrained incremental subgradient algorithms. The incremental subgradient algorithms are viewed as decentralized network optimization algorithms as applied to minimize a sum of functions, when each component function is known only to a particular agent of a distributed network. First, the standard cyclic incremental subgradient algorit...
متن کاملIncremental Subgradients for Constrained Convex Optimization: A Unified Framework and New Methods
We present a unifying framework for nonsmooth convex minimization bringing together -subgradient algorithms and methods for the convex feasibility problem. This development is a natural step for -subgradient methods in the direction of constrained optimization since the Euclidean projection frequently required in such methods is replaced by an approximate projection, which is often easier to co...
متن کاملDistributed Mirror Descent over Directed Graphs
In this paper, we propose Distributed Mirror Descent (DMD) algorithm for constrained convex optimization problems on a (strongly-)connected multi-agent network. We assume that each agent has a private objective function and a constraint set. The proposed DMD algorithm employs a locally designed Bregman distance function at each agent, and thus can be viewed as a generalization of the well-known...
متن کاملOn Stochastic Subgradient Mirror-Descent Algorithm with Weighted Averaging
This paper considers stochastic subgradient mirror-descent method for solving constrained convex minimization problems. In particular, a stochastic subgradient mirror-descent method with weighted iterate-averaging is investigated and its per-iterate convergence rate is analyzed. The novel part of the approach is in the choice of weights that are used to construct the averages. Through the use o...
متن کاملFixed Point Optimization Algorithms for Distributed Optimization in Networked Systems
This paper considers a networked system with a finite number of users and deals with the problem of minimizing the sum of all users’ objective functions over the intersection of all users’ constraint sets, onto which the projection cannot be easily implemented. The main objective of this paper is to devise distributed optimization algorithms, which enable each user to find the solution of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 147 شماره
صفحات -
تاریخ انتشار 2010