Evaluating Geographically Weighted Regression Models for Environmental Chemical Risk Analysis
نویسندگان
چکیده
In the evaluation of cancer risk related to environmental chemical exposures, the effect of many correlated chemicals on disease is often of interest. The relationship between correlated environmental chemicals and health effects is not always constant across a study area, as exposure levels may change spatially due to various environmental factors. Geographically weighted regression (GWR) has been proposed to model spatially varying effects. However, concerns about collinearity effects, including regression coefficient sign reversal (ie, reversal paradox), may limit the applicability of GWR for environmental chemical risk analysis. A penalized version of GWR, the geographically weighted lasso, has been proposed to remediate the collinearity effects in GWR models. Our focus in this study was on assessing through a simulation study the ability of GWR and GWL to correctly identify spatially varying chemical effects for a mixture of correlated chemicals within a study area. Our results showed that GWR suffered from the reversal paradox, while GWL overpenalized the effects for the chemical most strongly related to the outcome.
منابع مشابه
A comparison of least squares regression and geographically weighted regression modeling of West Nile virus risk based on environmental parameters
BACKGROUND The primary aim of the study reported here was to determine the effectiveness of utilizing local spatial variations in environmental data to uncover the statistical relationships between West Nile Virus (WNV) risk and environmental factors. Because least squares regression methods do not account for spatial autocorrelation and non-stationarity of the type of spatial data analyzed for...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملSpatial Analysis of COVID-19 and Exploration of Its Environmental and Socio-Demographic Risk Factors Using Spatial Statistical Methods: A Case Study of Iran
Background: Iran detected its first COVID-19 case in February 2020 in Qom province, which rapidly spread to other cities in the country. Iran, as one of those countries with the highest number of infected people, has officially reported 1812 deaths from a total number of 23049 confirmed infected cases that we used in the analysis. Materials and Methods: Geographic distribution by the map of ca...
متن کاملModeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear reg...
متن کاملEvaluating remotely sensed rainfall estimates using nonlinear mixed models and geographically weighted regression
This article evaluates an infrared-based satellite algorithm for rainfall estimation, the Convective Stratiform technique, over Mediterranean. Unlike a large number of works that evaluate remotely sensed estimates concentrating on global measures of accuracy, this work examines the relationship between ground truth and satellit0e derived data in a local scale. Hence, we examine the fit of groun...
متن کامل