Operations and Cooperations in Elliptic Cohomology, Part I: Generalized modular forms and the cooperation algebra

نویسندگان

  • Andrew Baker
  • A. K. Bousfield
چکیده

This is the first of two interconnected parts: Part I contains the geometric theory of generalized modular forms and their connections with the cooperation algebra for elliptic cohomology, E``∗E``, while Part II is devoted to the more algebraic theory associated with Hecke algebras and stable operations in elliptic cohomology. We investigate the structure of the stable operation algebra E``∗E`` by first determining the dual cooperation algebra E``∗E``. A major ingredient is our identification of the cooperation algebra E``∗E`` with a ring of generalized modular forms whoses exact determination involves understanding certain integrality conditions; this is closely related to a calculation by N. Katz of the ring of all ‘divided congruences’ amongst modular forms. We relate our present work to previous constructions of Hecke operators in elliptic cohomology. We also show that a well known operator on modular forms used by Ramanujan, Swinnerton-Dyer, Serre and Katz cannot extend to a stable operation. Introduction This paper is in two interelated parts: Part I contains the geometric theory of generalized modular forms and their connections with the cooperation algebra E``∗E``, while Part II will be devoted to the more algebraic theory associated with Hecke algebras and operations in elliptic cohomology. In our earlier paper [6], we defined operations in the ‘level 1’ version of elliptic cohomology E``( ) which restricted to the classical Hecke operators on the coefficient ring E``∗ (defined to be a ring of modular forms for the full modular group SL2(Z)). In the present paper we investigate the structure of the operation algebra E``E`` by determining the dual cooperation algebra E``∗E``, thus following the pattern established in the case of K-theory; we also describe a category Received August 3, 1994 Mathematics Subject Classification. 55N20, 55N22, 55S25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hecke Algebras Acting on Elliptic Cohomology

Introduction. In our earlier papers [2,3,4,5,6], we investigated stable operations and cooperations in elliptic cohomology and its variants, relating these to known operations on rings of modular forms. The purpose of this article is to give an introduction to these stable operation algebras, in particular explaining the connections with Hecke algebras and Morava stabilizer algebras; further de...

متن کامل

MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS

Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and  generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations  from  the triangular Banach algebraof t...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

Conformal field theory and elliptic cohomology

In this paper, we use conformal field theory to construct a generalized cohomology theory which has some properties of elliptic cohomology theory which was some properties of elliptic cohomology. A part of our presentation is a rigorous definition of conformal field theory following Segal’s axioms, and some examples, such as lattice theories associated with a unimodular even lattice. We also in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995