Transgenic Expression of FoxM1 Promotes Endothelial Repair following Lung Injury Induced by Polymicrobial Sepsis in Mice
نویسندگان
چکیده
Enhancing endothelial barrier integrity for the treatment of acute lung injury (ALI) is an emerging novel therapeutic strategy. Our previous studies have demonstrated the essential role of FoxM1 in mediating endothelial regeneration and barrier repair following lipopolysaccharide-induced lung injury. However, it remains unclear whether FoxM1 expression is sufficient to promote endothelial repair in experimental models of sepsis. Here, employing the FoxM1 transgenic (FoxM1 Tg) mice, we showed that transgenic expression of FoxM1 promoted rapid recovery of endothelial barrier function and survival in a clinically relevant model of sepsis induced by cecal ligation and puncture (CLP). We observed lung vascular permeability was rapidly recovered and returned to levels similar to baseline at 48 h post-CLP challenge in FoxM1 Tg mice whereas it remained markedly elevated in WT mice. Lung edema and inflammation were resolved only in FoxM1 Tg mice at 24 h post-CLP. 5-bromo-2-deoxyuridine incorporation assay revealed a drastic induction of endothelial proliferation in FoxM1 Tg lungs at 24h post-CLP, correlating with early induction of expression of FoxM1 target genes essential for cell cycle progression. Additionally, deletion of FoxM1 in endothelial cells, employing the mouse model with endothelial cell-restricted disruption of FoxM1 (FoxM1 CKO) resulted in impaired endothelial repair following CLP challenge. Together, these data suggest FoxM1 expression in endothelial cells is necessary and sufficient to mediate endothelial repair and thereby promote survival following sepsis challenge.
منابع مشابه
Endothelial p110γPI3K Mediates Endothelial Regeneration and Vascular Repair After Inflammatory Vascular Injury.
BACKGROUND The integrity of endothelial monolayer is a sine qua non for vascular homeostasis and maintenance of tissue-fluid balance. However, little is known about the signaling pathways regulating regeneration of the endothelial barrier after inflammatory vascular injury. METHODS AND RESULTS Using genetic and pharmacological approaches, we demonstrated that endothelial regeneration selectiv...
متن کاملCystathionine-Gamma-Lyase Gene Deletion Protects Mice against Inflammation and Liver Sieve Injury following Polymicrobial Sepsis
BACKGROUND Hydrogen sulfide (H2S), produced by the activity of cystathionine-gamma-lyase (CSE), is a key mediator of inflammation in sepsis. The liver sinusoidal endothelial cells (LSECs) are important target and mediator of sepsis. The aim of this study was to investigate the role of CSE-derived H2S on inflammation and LSECs fenestrae in caecal-ligation and puncture (CLP)-induced sepsis using ...
متن کاملIntravenous Arginine Administration Promotes Proangiogenic Cells Mobilization and Attenuates Lung Injury in Mice with Polymicrobial Sepsis
This study investigated the influence of intravenous arginine (Arg) administration on alteration of circulating proangiogenic cells and remote lung injury in a model of polymicrobial sepsis. Mice were assigned to one normal control group (NC) and two sepsis groups that were induced by cecal ligation and puncture (CLP). One of the sepsis groups was injected with saline (SS), whereas the other (S...
متن کاملFoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa
The alveolar epithelium is composed of the flat type I cells comprising 95% of the gas-exchange surface area and cuboidal type II cells comprising the rest. Type II cells are described as facultative progenitor cells based on their ability to proliferate and trans-differentiate into type I cells. In this study, we observed that pneumonia induced by intratracheal instillation of Pseudomonas aeru...
متن کاملDifferential Effects of Kupffer Cell Inactivation on Inflammation and The Liver Sieve Following Caecal-Ligation and Puncture-Induced Sepsis in Mice.
Sepsis remains a common clinical problem with significant mortality. Activation of the Kupffer cells during sepsis is associated with systemic inflammatory response and multiple organ failure. Kupffer cell activation also leads to structural changes in the liver sinusoidal endothelial cells (LSECs) during endotoxemia. However, these effects remain to be elucidated in caecal-ligation and punctur...
متن کامل