Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc
نویسنده
چکیده
Context. Theory predicts that low-mass protoplanets in a protostellar disc migrate into the central star on a time scale that is short compared with the disc lifetime or the giant planet formation time scale. Protoplanet eccentricities of e >∼ H/r can slow or reverse migration, but previous 2D studies of multiple protoplanets embedded in a protoplanetary disc have shown that gravitational scattering cannot maintain significant planet eccentricities against disc-induced damping. The eventual fate of these systems was migration into the central star. Aims. Here we simulate the evolution of low-mass protoplanetary swarms in three dimensions. The aim is to examine both protoplanet survival rates and the dynamical structure of the resulting planetary systems, and to compare them with 2D simulations. Methods. We present results from a 3D hydrodynamic simulation of eight protoplanets embedded in a protoplanetary disc. We also present a suite of simulations performed using an N-body code, modified to include prescriptions for planetary migration and for eccentricity and inclination damping. These prescriptions were obtained by fitting analytic formulae to hydrodynamic simulations of planets embedded in discs with initially eccentric and/or inclined orbits. Results. As was found in two dimensions, differential migration produces groups of protoplanets in stable, multiple mean-motion resonances that migrate in lockstep, preventing prolonged periods of gravitational scattering. In almost all simulations, this leads to large-scale migration of the protoplanet swarm into the central star in the absence of a viable stopping mechanism. The evolution involves mutual collisions, occasional instances of large-scale scattering, and the frequent formation of the long-lived, co-orbital planet systems that arise in > 30% of all runs. Conclusions. Disc-induced damping overwhelms eccentricity and inclination growth due to planet-planet interactions, leading to large-scale migration of protoplanet swarms. Co-orbital planets are a natural outcome of dynamical relaxation in a strongly dissipative environment, and if observed in nature would imply that such a period of evolution commonly arises during planetary formation.
منابع مشابه
The interaction of planets with a disc with MHD turbulence IV: Migration rates of embedded protoplanets
We present the results of global cylindrical disc simulations and local shearing box simulations of protoplanets interacting with a disc undergoing MHD turbulence. The specific emphasis of this paper is to examine and quantify the magnitude of the torque exerted by the disc on the embedded protoplanets as a function of the protoplanet mass, and thus to make a first study of the induced orbital ...
متن کاملPlanet migration in three-dimensional radiative discs
Context. The migration of growing protoplanets depends on the thermodynamics of the ambient disc. Standard modelling, using locally isothermal discs, indicate in the low planet mass regime an inward (type-I) migration. Taking into account non-isothermal effects, recent studies have shown that the direction of the type-I migration can change from inward to outward. Aims. In this paper we extend ...
متن کاملThe Migration and Growth of Protoplanets in Protostellar Discs
We investigate the gravitational interaction of a Jovian mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions have been investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Nonlinear...
متن کاملEmission from a Young Protostellar Object I. Signatures of Young Embedded Outflows
We examine emission from a young protostellar object (YPO) with threedimensional ideal MHD simulations and three-dimensional non-local thermodynamic equilibrium (non-LTE) line transfer calculations, and show the first results. To calculate the emission field, we employed a snapshot result of an MHD simulation having young bipolar outflows and a dense protostellar disk (a young circumstellar dis...
متن کاملOn Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. I. Two-dimensional Global Disk Simulations
Recent observations of gaps and non-axisymmetric features in the dust distributions of transition disks have been interpreted as evidence of embedded massive protoplanets. However, comparing the predictions of planet–disk interaction models to the observed features has shown far from perfect agreement. This may be due to the strong approximations used for the predictions. For example, spiral ar...
متن کامل