Ela a New Solvable Condition for a Pair of Generalized Sylvester Equations∗

نویسندگان

  • QING WEN WANG
  • GUANG-JING SONG
چکیده

A necessary and sufficient condition is given for the quaternion matrix equations AiX + Y Bi = Ci (i = 1, 2) to have a pair of common solutions X and Y . As a consequence, the results partially answer a question posed by Y.H. Liu (Y.H. Liu, Ranks of solutions of the linear matrix equation AX + Y B = C, Comput. Math. Appl., 52 (2006), pp. 861-872).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new solvable condition for a pair of generalized Sylvester equations

A necessary and sufficient condition is given for the quaternion matrix equations AiX + Y Bi = Ci (i = 1, 2) to have a pair of common solutions X and Y . As a consequence, the results partially answer a question posed by Y.H. Liu (Y.H. Liu, Ranks of solutions of the linear matrix equation AX + Y B = C, Comput. Math. Appl., 52 (2006), pp. 861-872).

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

An Iterative Algorithm for the Generalized Reflexive Solutions of the Generalized Coupled Sylvester Matrix Equations

An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations AXB − CYD,EXF − GYH M,N , which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matrices X and Y . When the matrix equations are consistent, for any initial generalized reflexive matrix pair X1, Y1 , the generalized reflexive solutions can be obtained b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009