Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis.
نویسندگان
چکیده
TIR (Toll/interleukin-1 receptor) domain-containing proteins play a crucial role in innate immunity in eukaryotes. Brucella is a highly infectious intracellular bacterium that encodes a TIR domain protein (TcpB) to subvert host innate immune responses to establish a beneficial niche for pathogenesis. TcpB inhibits NF-κB (nuclear factor κB) activation and pro-inflammatory cytokine secretions mediated by TLR (Toll-like receptor) 2 and TLR4. In the present study, we have demonstrated that TcpB modulates microtubule dynamics by acting as a stabilization factor. TcpB increased the rate of nucleation as well as the polymerization phases of microtubule formation in a similar manner to paclitaxel. TcpB could efficiently inhibit nocodazole- or cold-induced microtubule disassembly. Microtubule stabilization by TcpB is attributed to the BB-loop region of the TIR domain, and a point mutation affected the microtubule stabilization as well as the TLR-suppression properties of TcpB.
منابع مشابه
Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages
Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts’ defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host’s killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defi...
متن کاملCloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the TIR domain from the Brucella melitensis TIR-domain-containing protein TcpB.
In mammals, Toll-like receptors (TLRs) recognize conserved microbial molecular signatures and induce an early innate immune response in the host. TLR signalling is mediated by interactions between the cytosolic TIR (Toll/interleukin-1 receptor) domains of the receptor and the adaptor proteins. Increasingly, it is apparent that pathogens target this interaction via pathogen-expressed TIR-domain-...
متن کاملModulation of Microtubule Dynamics Affects Brucella abortus Intracellular Survival, Pathogen-Containing Vacuole Maturation, and Pro-inflammatory Cytokine Production in Infected Macrophages
The microtubule (MT) cytoskeleton regulates several cellular processes related to the immune system. For instance, an intricate intracellular transport mediated by MTs is responsible for the proper localization of vesicular receptors of innate immunity and its adaptor proteins. In the present study, we used nocodazole to induce MTs depolymerization and paclitaxel or recombinant (r) TIR (Toll/in...
متن کاملImmune reactivity of sera obtained from brucellosis patients and vaccinated-rabbits to a fusion protein from Brucella melitensis
Objective(s): Brucella spp. are facultative intracellular pathogens which can stay alive and multiply in professional and nonprofessional phagocytes. Immunity against Brucella melitensis involves antigen-specific CD4+ and CD8+ T-cells activation and humoral immune responses. Due to negative aspects of live attenuated vaccines, much attention has been focused on finding Brucella-protective antig...
متن کاملConstruction of an Expression Plasmid (Vector) Encoding Brucella melitensis Outer Membrane Protein, a Candidate for DNA Vaccine
Background: DNA vaccination with plasmid encoding bacterial, viral, and parasitic immunogens has been shown to be an attractive method to induce efficient immune responses. Bacteria of the genus Brucella are facultative intracellular pathogens for which new and efficient vaccines are needed. Methods: To evaluate the use of a DNA immunization strategy for protection against brucellosis, a pla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 439 1 شماره
صفحات -
تاریخ انتشار 2011