An approximate method for solving the inverse scattering problem with fixed-energy data

نویسندگان

  • A. G. Ramm
  • W. Scheid
چکیده

Assume that the potential q(r), r > 0, is known for r ≥ a > 0, and the phase shifts δl(k) are known at a fixed energy, that is at a fixed k, for l = 0, 1, 2, . . . . The inverse scattering problem is: find q(r) on the interval 0≤ r ≤ a, given the above data. A very simple approximate numerical method is proposed for solving this inverse problem. The method consists in reduction of this problem to a moment problem for q(r) on the interval r ∈ [0, a]. This moment problem can be solved numerically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

Fixed-energy inverse scattering

The author’s method for solving inverse scattering problem with fixed-energy data is described. Its comparison with the method based on the D-N map is given. A new inversion procedure is formulated. c © 2008 Elsevier Ltd. All rights reserved. MSC: 35R30; 47H17; 65M30; 81U05 PACS: 03.80.+r.; 03.65.Nk

متن کامل

Inverse scattering with fixed - energy data ∗

The Newton-Sabatier method for solving inverse scattering problem with fixed-energy phase shifts for a sperically symmetric potential is discussed. It is shown that this method is fundamentally wrong in the sense that its foundations are wrong: in general it cannot be carried through because its basic integral equation may be not solvable for some r > 0 and in this case the method breaks down; ...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

An iterative approach to non-overdetermined inverse scattering at fixed energy

We propose an iterative approximate reconstruction algorithm for non-overdetermined inverse scattering at fixed energy E with incomplete data in dimension d ≥ 2. In particular, we obtain rapidly converging approximate reconstructions for this inverse scattering for E → +∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999