Macrophage migration inhibitory factor increases leukocyte-endothelial interactions in human endothelial cells via promotion of expression of adhesion molecules.
نویسندگان
چکیده
Macrophage migration inhibitory factor (MIF) has been shown to promote leukocyte-endothelial cell interactions, although whether this occurs via an effect on endothelial cell function remains unclear. Therefore, the aims of this study were to examine the ability of MIF expressed by endothelial cells to promote leukocyte adhesion and to investigate the effect of exogenous MIF on leukocyte-endothelial interactions. Using small interfering RNA to inhibit HUVEC MIF production, we found that MIF deficiency reduced the ability of TNF-stimulated HUVECs to support leukocyte rolling and adhesion under flow conditions. These reductions were associated with decreased expression of E-selectin, ICAM-1, VCAM-1, IL-8, and MCP-1. Inhibition of p38 MAPK had a similar effect on adhesion molecule expression, and p38 MAPK activation was reduced in MIF-deficient HUVECs, suggesting that MIF mediated these effects via promotion of p38 MAPK activation. In experiments examining the effect of exogenous MIF, application of MIF to resting HUVECs failed to induce leukocyte rolling and adhesion, whereas addition of MIF to TNF-treated HUVECs increased these interactions. This increase was independent of alterations in TNF-induced expression of E-selectin, VCAM-1, and ICAM-1. However, combined treatment with MIF and TNF induced de novo expression of P-selectin, which contributed to leukocyte rolling. In summary, these experiments reveal that endothelial cell-expressed MIF and exogenous MIF promote endothelial adhesive function via different pathways. Endogenous MIF promotes leukocyte recruitment via effects on endothelial expression of several adhesion molecules and chemokines, whereas exogenous MIF facilitates leukocyte recruitment induced by TNF by promoting endothelial P-selectin expression.
منابع مشابه
The effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملتمایز سلولهای دندریتیک مشتق از مونوسیت بر روی لایهای از سلولهای اندوتلیال بهعنوان لایه تغذیهکننده
Background: The innate and adaptive immune responses are dependent on the migration of leukocytes across endothelial cells. Dendritic cells (DCs) play an important role in the initiation of cellular immune responses during their migration from tissues into the lymph nodes where they interact with endothelial cells of lymphatic vessels. We investigated the effect...
متن کاملMacrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2.
Macrophage migration inhibitory factor (MIF) was originally identified for its ability to inhibit the random migration of macrophages in vitro. MIF is now recognized as an important mediator in a range of inflammatory disorders. We recently observed that the absence of MIF is associated with a reduction in leukocyte-endothelial cell interactions induced by a range of inflammatory mediators, sug...
متن کاملO 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions
KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 185 2 شماره
صفحات -
تاریخ انتشار 2010