Dynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo

نویسندگان

  • Richa Rikhy
  • Manos Mavrakis
  • Jennifer Lippincott-Schwartz
چکیده

The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) regulate metaphase furrow formation and PM organization in the syncytial embryo. Dynamin was localized on short PM furrows during interphase, mediating endocytosis of PM components. Dynamin redistributed off ingressed PM furrows in metaphase, correlating with stabilized PM components and the associated actin regulatory machinery on long furrows. Acute inhibition of dynamin in the temperature sensitive shibire mutant embryo resulted in morphogenetic consequences in the syncytial division cycle. These included inhibition of metaphase furrow ingression, randomization of proteins normally polarized to intercap PM and disruption of the diffusion barrier separating PM domains above nuclei. Based on these findings, we propose that cell cycle changes in dynamin orchestrate recruitment of actin regulatory machinery for PM furrow dynamics during the early mitotic cycles in the Drosophila embryo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinating the cytoskeleton and endocytosis for regulated plasma membrane growth in the early Drosophila embryo

Plasma membrane organization is under the control of cytoskeletal networks and endocytic mechanisms, and a growing literature is showing how closely these influences are interconnected. Here, we review how plasma membranes are formed around individual nuclei of the syncytial Drosophila embryo. Specifically, we outline the pathways that promote and maintain the growth of pseudocleavage and cellu...

متن کامل

The BAR domain of amphiphysin is required for cleavage furrow tip–tubule formation during cellularization in Drosophila embryos

De novo formation of cells in the Drosophila embryo is achieved when each nucleus is surrounded by a furrow of plasma membrane. Remodeling of the plasma membrane during cleavage furrow ingression involves the exocytic and endocytic pathways, including endocytic tubules that form at cleavage furrow tips (CFT-tubules). The tubules are marked by amphiphysin but are otherwise poorly understood. Her...

متن کامل

Drosophila spectrin: the membrane skeleton during embryogenesis

The distribution of alpha-spectrin in Drosophila embryos was determined by immunofluorescence using affinity-purified polyclonal or monoclonal antibodies. During early development, spectrin is concentrated near the inner surface of the plasma membrane, in cytoplasmic islands around the syncytial nuclei, and, at lower concentrations, throughout the remainder of the cytoplasm of preblastoderm emb...

متن کامل

Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo

Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membra...

متن کامل

The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport

Cellularisation of the Drosophila syncytial blastoderm embryo into the polarised blastoderm epithelium provides an excellent model with which to determine how cortical plasma membrane asymmetry is generated during development. Many components of the molecular machinery driving cellularisation have been identified, but cell signalling events acting at the onset of membrane asymmetry are poorly u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015