Solving Rational Eigenvalue Problems via Linearization

نویسندگان

  • Yangfeng Su
  • Zhaojun Bai
چکیده

The rational eigenvalue problem is an emerging class of nonlinear eigenvalue problems arising from a variety of physical applications. In this paper, we propose a linearization-based method to solve the rational eigenvalue problem. The proposed method converts the rational eigenvalue problem into a well-studied linear eigenvalue problem, and meanwhile, exploits and preserves the structure and properties of the original rational eigenvalue problem. For example, the low-rank property leads to a trimmed linearization. We show that solving a class of rational eigenvalue problems is just as convenient and efficient as solving linear eigenvalue problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems

We propose a new uniform framework of Compact Rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a convenient linearization is us...

متن کامل

Linearization techniques for band structure calculations in absorbing photonic crystals

Band structure calculations for photonic crystals require the numerical solution of eigenvalue problems. In this paper, we consider crystals composed of lossy materials with frequency-dependent permittivities. Often, these frequency dependencies are modeled by rational functions, such as the Lorentz model, in which case the eigenvalue problems are rational in the eigenvalue parameter. After spa...

متن کامل

Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods

We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and wi...

متن کامل

Compact Rational Krylov Methods for the Nonlinear Eigenvalue Problem

We present a new framework of Compact Rational Krylov (CORK) methods for solving the nonlinear eigenvalue problem (NLEP): A(λ)x = 0, where λ ∈ Ω ⊆ C is called an eigenvalue, x ∈ Cn \ {0} the corresponding eigenvector, and A : Ω→ Cn×n is analytic on Ω. Linearizations are used for many years for solving polynomial eigenvalue problems [5]. The matrix polynomial P (λ) = ∑d i=0 λ Pi, with Pi ∈ Cn×n,...

متن کامل

A Pade Approximate Linearization for Solving the Quadratic Eigenvalue Problem with Low- Rank Damping

The low-rank damping term appears commonly in quadratic eigenvalue problems arising from physical simulations. To exploit the low-rank damping property, we propose a Padé Approximate Linearization (PAL) algorithm. The advantage of the PAL algorithm is that the dimension of the resulting linear eigenvalue problem is only n+ lm, which is generally substantially smaller than the dimension 2n of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011