Empirically Derived Sensitivity of Vegetation to Climate across Global Gradients of Temperature and Precipitation
نویسندگان
چکیده
The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local environmental conditions. Ecosystem functioning (e.g., interaction between photosynthesis and temperature) can also acclimate to different climatological states. The combination of these two factors thus determines ecological– climate interactions.Aglobal empiricalmap of the sensitivity of vegetation to climate is derived using the response of satellite-observed greenness to interannual variations in temperature and precipitation. Mechanisms constraining ecosystem functioning are inferred by analyzing how the sensitivity of vegetation to climate varies across climate space.Analysis yields empirical evidence formultiple physical andbiologicalmediators of the sensitivity of vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates of photosynthesis. The sensitivity of vegetation transitions in sign (greener when warmer or drier to greener when cooler or wetter) along an emergent line in climate space with a slope of about 59mmyr 8C, twice as steep as contours of aridity. Themismatch between these slopes is evidence at a global scale of the limitation of both water supply due to inefficiencies in plant access to rainfall and plant physiological responses to atmospheric water demand. This empirical pattern can provide a functional constraint for process-based models, helping to improve predictions of the global-scale response of vegetation to a changing climate.
منابع مشابه
Net Primary production changes affected by climate fluctuations (Case study: Qazvin plain)
Vegetation changes can change the rainfall and temperature cycle and also climate fluctuations, especially temperature and precipitation parameters, have significant effects on vegetation. Climate change causes restriction for plant activities which cause changes in vegetation indices including NPP. Considering that Qazvin plain has been affected by climate fluctuations and drought in recent ye...
متن کاملEcological Effects of Climate Factors on Rangeland Vegetation (Case Study: Polour Rangelands)
Climate is the most important factor of plants distribution in global and regional scale. Understanding the current distribution of vegetation cover and its interaction with climate regularity is important for predicting its future. In order to determine the effective climate factors in plant life-form in Polour rangelands in the Damavand summit (2400 to 4100 m above sea level), Iran, a study w...
متن کاملQuantitative reconstruction of past climates using extension of modern climate-pollen relations based on the MAT method
Introduction Instrumental records span only a tiny fraction (<107) of the Earth’s climatic history. Therefore, indirect source of climate data must be used. Subfossil pollen and plant macrofossil data derived from sediment profiles can provide quantitative information on past climate. Recognizing the relationship between pollen assemblages and climatic variables and then interpreting foss...
متن کاملAnalysis of Temporal Vegetation Changes in Western Rangelands of Kerman Province Using MODIS Level 3 Data and its Relation to Climate Factors
Vegetation is one of the most important physical properties of the earth's surface that plays an important role in reducing the occurrence of wind erosion and reducing dust particulate matter emissions, especially in arid and semiarid regions. The extent of development or destruction of vegetation in an area is usually affected by climate change at different times. This study aimed to investiga...
متن کاملBeyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation
BACKGROUND Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and...
متن کامل