Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase.
نویسندگان
چکیده
The expression of scaffoldin-anchoring genes and one of the major processive endoglucanases (CelS) from the cellulosome of Clostridium thermocellum has been shown to be dependent on the growth rate. For the present work, we studied the gene regulation of selected cellulosomal endoglucanases and a major xylanase in order to examine the previously observed substrate-linked alterations in cellulosome composition. For this purpose, the transcript levels of genes encoding endoglucanases CelB, CelG, and CelD and the family 10 xylanase XynC were determined in batch cultures, grown on either cellobiose or cellulose, and in carbon-limited continuous cultures at different dilution rates. Under all conditions tested, the transcript levels of celB and celG were at least 10-fold higher than that of celD. Like the major processive endoglucanase CelS, the transcript levels of these endoglucanase genes were also dependent on the growth rate. Thus, at a rate of 0.04 h(-1), the levels of celB, celG, and celD were threefold higher than those obtained in cultures grown at maximal rates (0.35 h(-1)) on cellobiose. In contrast, no clear correlation was observed between the transcript level of xynC and the growth rate-the levels remained relatively high, fluctuating between 30 and 50 transcripts per cell. The results suggest that the regulation of C. thermocellum endoglucanases is similar to that of the processive endoglucanase celS but differs from that of a major cellulosomal xylanase in that expression of the latter enzyme is independent of the growth rate.
منابع مشابه
Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis.
A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, i...
متن کاملInterplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states.
The anaerobic, thermophilic cellulolytic bacterium Clostridium thermocellum is known for its elaborate cellulosome complex, but it also produces a separate free cellulase system. Among the free enzymes, the noncellulosomal enzyme Cel9I is a processive endoglucanase whose sequence and architecture are very similar to those of the cellulosomal enzyme Cel9R; likewise, the noncellulosomal exoglucan...
متن کاملDetermination of subunit composition of Clostridium cellulovorans cellulosomes that degrade plant cell walls.
Clostridium cellulovorans produces a cellulase enzyme complex (cellulosome). In this study, we isolated two plant cell wall-degrading cellulosomal fractions from culture supernatant of C. cellulovorans and determined their subunit compositions and enzymatic activities. One of the cellulosomal fractions showed fourfold-higher plant cell wall-degrading activity than the other. Both cellulosomal f...
متن کاملXylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation.
The Clostridium cellulovorans xynA gene encodes the cellulosomal endo-1,4-beta-xylanase XynA, which consists of a family 11 glycoside hydrolase catalytic domain (CD), a dockerin domain, and a NodB domain. The recombinant acetyl xylan esterase (rNodB) encoded by the NodB domain exhibited broad substrate specificity and released acetate not only from acetylated xylan but also from other acetylate...
متن کاملImpact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis
BACKGROUND Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and othe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 187 7 شماره
صفحات -
تاریخ انتشار 2005