Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans
نویسندگان
چکیده
OBJECTIVE Diabetes mellitus (DM) increases cardiovascular risk, at least in part, through shortage of vascular regenerative cells derived from the bone marrow (BM). In experimental models, DM causes morphological and functional BM alterations, but information on BM function in human DM is missing. Herein, we sought to assay mobilization of stem and proangiogenic cells in subjects with and without DM. RESEARCH DESIGN AND METHODS In a prospective trial (NCT01102699), we tested BM responsiveness to 5 μg/kg human recombinant granulocyte colony-stimulating factor (hrG-CSF) in 24 individuals with DM (10 type 1 and 14 type 2) and 14 individuals without DM. Before and 24 h after hrG-CSF, we quantified circulating stem/progenitor cells and total and differential white blood cell counts. We also evaluated in vivo the proangiogenic capacity of peripheral blood mononuclear cells using the Matrigel plug assay. RESULTS In response to hrG-CSF, levels of CD34(+) cells and other progenitor cell phenotypes increased in subjects without DM. Patients with DM had significantly impaired mobilization of CD34(+), CD133(+), and CD34(+)CD133(+) hematopoietic stem cells and CD133(+)KDR(+) endothelial progenitors, independently of potential confounders. The in vivo angiogenic capacity of peripheral blood mononuclear cells significantly increased after hrG-CSF in control subjects without DM, but not in patients with DM. DM was also associated with the inability to upregulate CD26/DPP-4 on CD34(+) cells, which is required for the mobilizing effect of granulocyte colony-stimulating factor. CONCLUSIONS Stem and proangiogenic cell mobilization in response to hrG-CSF is impaired in DM, possibly because of maladaptive CD26/DPP-4 regulation. These alterations may hamper tissue repair and favor the development of cardiovascular complications.
منابع مشابه
Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملExtremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells
Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...
متن کاملPlerixafor in the Treatment of Stem Cell Mobilization Failure; First Experience in Iran
High-dose chemotherapy and autologous stem cell transplantation (SCT) have become an effective care for many patients with hematological malignancies. Harvesting the stem cells is one the most important parts of SCT. The two most commonly used mobilization regimens are the use of granulocyte colony-stimulating factor (G-CSF) or G-CSF plus chemotherapy. However, about 10-30% of patients are unab...
متن کاملPlerixafor in the Treatment of Stem Cell Mobilization Failure; First Experience in Iran
High-dose chemotherapy and autologous stem cell transplantation (SCT) have become an effective care for many patients with hematological malignancies. Harvesting the stem cells is one the most important parts of SCT. The two most commonly used mobilization regimens are the use of granulocyte colony-stimulating factor (G-CSF) or G-CSF plus chemotherapy. However, about 10-30% of patients are unab...
متن کاملDiabetes Limits Stem Cell Mobilization Following G-CSF but Not Plerixafor
Previous studies suggest that diabetes impairs hematopoietic stem cell (HSC) mobilization in response to granulocyte colony-stimulating factor (G-CSF). In this study, we tested whether the CXCR4 antagonist plerixafor, differently from G-CSF, is effective in mobilizing HSCs in patients with diabetes. In a prospective study, individuals with and without diabetes (n = 10/group) were administered p...
متن کامل