Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

نویسندگان

  • Susan J. Simmons
  • Fang Fang
  • Qijun Fang
  • Karl Ricanek
چکیده

Carlo model composition, quantitative trait loci. Abstract—Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Bayesian LASSO for QTL Mapping

Mapping quantitative trait loci (QTL) is to identify molecular markers or genomic loci that influence the variation of complex traits. The problem is complicated by the facts that QTL data usually contain a large number of markers across the entire genome and most of them have little or no effect on the phenotype. In this paper, we propose several Bayesian hierarchical models for mapping multip...

متن کامل

Bayesian model determination for quantitative trait loci

A reversible jump Markov chain Monte Carlo (MCMC) algorithm is illustrated to infer the number of quantitative trait loci (QTL) a ecting a phenotypic trait, their chromosomal locations, and their e ects. A multi-loci model is t to quantitative trait and molecular marker data, with the trait response modeled as a linear function of the additive and dominance e ects of the unknown QTL genotypes. ...

متن کامل

QTL Analysis using Bayesian Interval Mapping

R/qtlbim (www.qtlbim.org) provides a powerful suite of tools for model selection of the genetic architecture for traits influenced by multiple quantitative trait loci (QTL). The Markov chain Monte Carlo (MCMC) sampling approach draws samples from the more probable genetic architectures. Subsequent visualization and summary provides posterior estimates of the number and location of QTL, their ma...

متن کامل

Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms.

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL, and markers, allele frequencies of the markers, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012