Covariate Functional Form in Cox Models

نویسنده

  • Luke Keele
چکیده

In most event history models, the effect of a covariate on the hazard is assumed to have a log-linear functional form. For continuous covariates, this assumption is often violated as the effect is highly nonlinear. Assuming a log-linear functional form when the nonlinear form applies causes specification errors leading to erroneous statistical conclusions. Scholars can, instead of ignoring the presence of nonlinear effects, test for such nonlinearity and incorporate it into the model. I review methods to test for and model nonlinear functional forms for covariates in the Cox model. Testing for such nonlinear effects is important since such nonlinearity can appear as nonproportional hazards, but time varying terms will not correct the misspecification. I investigate the consequences of nonlinear function forms using data on international conflicts from 1950-1985. I demonstrate that the conclusions drawn from this data depend on fitting the correct functional form for the covariates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models

BACKGROUND AND OBJECTIVE Cox model is a popular model in survival analysis, which assumes linearity of the covariate on the log hazard function, While continuous covariates can affect the hazard through more complicated nonlinear functional forms and therefore, Cox models with continuous covariates are prone to misspecification due to not fitting the correct functional form for continuous covar...

متن کامل

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models

Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data analysis that the compound covariate method generally competes well with ridge regression and Lasso me...

متن کامل

Functional Inference in Frailty Measurement Error Models for Clustered Survival Data Using the SIMEX Approach

We consider frailty models for clustered survival data in the presence of measurement errors in covariates. We Ž rst show that when the measurement error is accounted for in a full likelihood analysis but the distribution of the unobserved covariate is misspeciŽ ed, the maximum likelihood estimators are asymptotically biased, especially for the variance component, whose bias can be substantial....

متن کامل

Understanding the Cox Regression Models with Time-Change Covariates

The Cox regression model is a cornerstone of modern survival analysis and is widely used in many other fields as well. But the Cox models with time-change covariates are not easy to understand or visualize. We therefore offer a simple and easy-to-understand interpretation of the (arbitrary) baseline hazard and time-change covariate. This interpretation also provides a way to simulate variables ...

متن کامل

Asymptotic Theory for the Cox Model with Missing Time-dependent Covariate

The relationship between a time-dependent covariate and survival times is usually evaluated via the Cox model. Time-dependent covariates are generally available as longitudinal data collected regularly during the course of the study. A frequent problem, however, is the occurence of missing covariate data. A recent approach to estimation in the Cox model in this case jointly models survival and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005