Doppler-shift compensation by the mustached bat: quantitative data.

نویسندگان

  • A W Keating
  • O W Henson
  • M M Henson
  • W C Lancaster
  • D H Xie
چکیده

Quantitative data for Doppler-shift compensation by Pteronotus parnellii parnellii were obtained with a device which propelled the bats at constant velocities over a distance of 12 m. The bats compensated for Doppler shifts at all velocities tested (0.1-5.0 ms-1). The main findings were (1) that compensation was usually accomplished by a progressive lowering of the approximately 61 kHz second harmonic constant-frequency component of emitted sounds in small frequency steps (93 +/- 72 Hz); (2) that the time needed to reach a steady compensation level averaged 514 +/- 230 ms and the number of pulses required to reach full compensation averaged 10.78 +/- 5.16; (3) that the animals compensated to hold the echo (reference) frequency at a value that was slightly higher than the resting frequency and slightly lower than the cochlear resonance frequency; (4) that reference frequency varied as a function of velocity, the higher the velocity of the animal, the higher was the reference frequency (slope 55 Hz m-1s-2); and (5) that the mean reference frequency was always an undercompensation. The average amount of undercompensation was 15.8%. There was a significant difference (P < or = 0.005) in Doppler-shift compensation data collected at velocities that differed by 0.1 ms-1. A velocity difference of 0.1 ms-1 corresponds to a Doppler-shift difference of about 35 Hz in the approximately 61 kHz signals reaching the ear.

منابع مشابه

Principles of auditory information-processing derived from neuroethology.

For auditory imaging, a bat emits orientation sounds (pulses) and listens to echoes. The parameters characterizing a pulse-echo pair each convey particular types of biosonar information. For example, a Doppler shift (a difference in frequency between an emitted pulse and its echo) carries velocity information. For a 61-kHz sound, a 1.0-kHz Doppler shift corresponds to 2.8 ms-1 velocity. The del...

متن کامل

Mustached Bat Adaptation for Echolocation

1. In the mustached bat, Pteronotus parnellii, the "resting" frequency of the constant-frequency component of the second harmonic (CFz) of the orientation sound (biosonar signal) is different among individuals within a range from 59.69 to 63.33 kHz. The standard deviation of CF2 resting frequency is 0.091 kHz on the average for individual bats. The male's CF2 resting frequency (61.250 + 0.534 k...

متن کامل

Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats.

Echolocating horseshoe bats respond to flight-speed induced shifts in echo frequency by adjusting the frequency of subsequent calls. Under natural conditions, Doppler effects may force the frequency of a returning echo several kilohertz above the original emission frequency. By lowering subsequent call frequencies, the bat can return echo frequencies to within a narrow spectral bandwidth to whi...

متن کامل

Combination-sensitive neurons in the primary auditory cortex of the mustached bat.

In the mustached bat, Pteronotus parnellii, neurons in the primary auditory cortex (AI) have been thought to respond primarily to single frequencies, as in other mammals. However, neurons in the Doppler-shifted constant-frequency (DSCF) area, a part of the mustached bat's AI that contains an overrepresentation of the prominent CF2 component of the biosonar signal, were found to show facilitativ...

متن کامل

Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex.

Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of experimental biology

دوره 188  شماره 

صفحات  -

تاریخ انتشار 1994